Thursday, October 23, 2025
HomeData Modelling & AINumber of integers with odd number of set bits

Number of integers with odd number of set bits

Given a number n, count number of integers smaller than or equal to n that have odd number of set bits.
Examples: 
 

Input : 5
Output : 3
Explanation :
Integers with odd number of 
set bits in range 1 to 5 :
0 contains 0 set bits
1 contains 1 set bits
2 contains 1 set bits
3 contains 2 set bits
4 contains 1 set bits
5 contains 2 set bits

Input : 10
Output : 5
Explanation :
Integers with odd set bits are 1, 2,
4, 7 and 8.

 

Prerequisites: Count number of set bits
The idea is based on below fact.
 

If n is odd then there are total n+1 integers smaller than or equal to n (0, 1, 2 … n) and half of these integers contain odd number of set bits.

How to handle case when n is even? We know result for n-1. We count set bits in n and add 1 to n/2 if the count is odd. Else we return n/2.
 

C++




// CPP code to find numbers with
// odd number of set bits
#include <bits/stdc++.h>
using namespace std;
 
// function that returns the number
// of integers with odd number of
// set bits
int countWithOddSetBits(int n)
{
    // If n is odd, then half of the
    // integers in (0, 1, .. n) contain
    // odd number of set bits.
    if (n % 2 != 0)
        return (n + 1) / 2;
 
    // If n is even, we know result for
    // n-1. We explicitly compute set bit
    // count in n.
    int count = __builtin_popcount(n);
 
    int ans = n / 2;
    if (count % 2 != 0)
        ans++;
    return ans;
}
 
// Driver code
int main()
{
    int n = 10;
    cout << countWithOddSetBits(n);
    return 0;
}


C




// C code to find numbers with
// odd number of set bits
#include <stdio.h>
 
// function that returns the number
// of integers with odd number of
// set bits
int countWithOddSetBits(int n)
{
    // If n is odd, then half of the
    // integers in (0, 1, .. n) contain
    // odd number of set bits.
    if (n % 2 != 0)
        return (n + 1) / 2;
 
    // If n is even, we know result for
    // n-1. We explicitly compute set bit
    // count in n.
    int count = __builtin_popcount(n);
 
    int ans = n / 2;
    if (count % 2 != 0)
        ans++;
    return ans;
}
 
// Driver code
int main()
{
    int n = 10;
    printf("%d",countWithOddSetBits(n));
    return 0;
}
 
// This code is contributed by kothavvsaaash.


Java




// Java code to find numbers
// with odd number of set bits
import java.io.*;
 
class GFG
{
     
// function that returns the
// number of integers with
// odd number of set bits
static int countWithOddSetBits(int n)
{
    // If n is odd, then half
    // of the integers in
    // (0, 1, .. n) contain
    // odd number of set bits.
    if (n % 2 != 0)
        return (n + 1) / 2;
 
    // If n is even, we know
    // result for n-1. We
    // explicitly compute set
    // bit count in n.
    int count = (n);
 
    int ans = n / 2;
    if (count % 2 != 0)
        ans++;
    return ans;
}
 
// Driver Code
public static void main (String[] args)
{
    int n = 10;
    System.out.println( countWithOddSetBits(n));
}
}
 
// This code is contributed by aj_36


Python3




# Python 3 code to find numbers with
# odd number of set bits
 
# function that returns the number
# of integers with odd number of
# set bits
def countWithOddSetBits(n):
     
    # If n is odd, then half of the
    # integers in (0, 1, .. n) contain
    # odd number of set bits.
    if (n % 2 != 0):
        return (n + 1) / 2
 
    # If n is even, we know result for
    # n-1. We explicitly compute set
    # bit count in n.
    count = bin(n).count('1')
 
    ans = n / 2
    if (count % 2 != 0):
        ans += 1
    return ans
 
# Driver code
if __name__ == '__main__':
    n = 10
    print(int(countWithOddSetBits(n)))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# code to find numbers
// with odd number of set bits
using System;
 
class GFG
{
     
// function that returns the
// number of integers with
// odd number of set bits
static int countWithOddSetBits(int n)
{
    // If n is odd, then half
    // of the integers in
    // (0, 1, .. n) contain
    // odd number of set bits.
    if (n % 2 != 0)
        return (n + 1) / 2;
 
    // If n is even, we know
    // result for n-1. We
    // explicitly compute set
    // bit count in n.
    int count = (n);
 
    int ans = n / 2;
    if (count % 2 != 0)
        ans++;
    return ans;
}
 
// Driver Code
static public void Main ()
{
    int n = 10;
    Console.WriteLine(countWithOddSetBits(n));
}
}
 
// This code is contributed by ajit


PHP




<?php
// PHP code to find numbers with
// odd number of set bits
 
// function that returns the number
// of integers with odd number of
// set bits
function countWithOddSetBits($n)
{
    // If n is odd, then half of
    // the integers in (0, 1, .. n)
    // contain odd number of set bits.
    if ($n % 2 != 0)
        return ($n + 1) / 2;
 
    // If n is even, we know result
    // for n-1. We explicitly compute
    // set bit count in n.
    $count = ($n);
 
    $ans = $n / 2;
    if ($count % 2 != 0)
        $ans++;
    return $ans;
}
 
// Driver code
$n = 10;
echo countWithOddSetBits($n);
 
// This code is contributed by aj_36
?>


Javascript




<script>
 
    // Javascript code to find numbers
    // with odd number of set bits
     
    // function that returns the
    // number of integers with
    // odd number of set bits
    function countWithOddSetBits(n)
    {
        // If n is odd, then half
        // of the integers in
        // (0, 1, .. n) contain
        // odd number of set bits.
        if (n % 2 != 0)
            return parseInt((n + 1) / 2, 10);
 
        // If n is even, we know
        // result for n-1. We
        // explicitly compute set
        // bit count in n.
        let count = (n);
 
        let ans = parseInt(n / 2, 10);
        if (count % 2 != 0)
            ans++;
        return ans;
    }
     
    let n = 10;
    document.write(countWithOddSetBits(n));
     
</script>


Output : 

5

 

Time complexity: O(k), where k is the max number of bits in a number.
Auxiliary space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS