Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AINumber of divisors of product of N numbers

Number of divisors of product of N numbers

Given an array arr[] of integers, the task is to count the number of divisors of product of all the elements from given array.
Examples: 
 

Input: arr[] = {3, 5, 7} 
Output:
3 * 5 * 7 = 105. 
Factors of 105 are 1, 3, 5, 7, 15, 21, 35 and 105.
Input: arr[] = {5, 5} 
Output:
5 * 5 = 25. 
Factors of 25 are 1, 5 and 25. 
 

 

A simple solution is to multiply all the N integers and count the number of divisors of the product. However, if the product goes above 107 then we can’t use this approach because numbers greater than 10^7 can’t be prime factorized efficiently using the sieve approach. 
An efficient solution does not involve the calculation of the product of all the numbers. We already know that when we multiply 2 numbers, powers get added. For example, 
 

A = 27, B = 23 
A * B = 210 
Therefore, we need to maintain the count of every power in the product of numbers which can be done by adding counts of powers from every element. 
 

Hence, to compute the number of divisors, the main focus is on the count of primes encountered. So we will stress only on the primes encountered in the product without bothering about the product itself. While traversing through the array, we keep the count of every prime encountered.
 

Number of divisors = (p1 + 1) * (p2 + 1) * (p3 + 1) * … * (pn + 1) 
where p1, p2, p3, …, pn are the primes encountered in the prime factorization of all the elements. 
 

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define MAX 10000002
 
using namespace std;
int prime[MAX];
 
// Array to store count of primes
int prime_count[MAX];
 
// Function to store smallest prime factor
// of every number till MAX
void sieve()
{
    memset(prime, 0, sizeof(prime));
    prime[0] = prime[1] = 1;
    for (int i = 2; i * i < MAX; i++) {
        if (prime[i] == 0) {
            for (int j = i * 2; j < MAX; j += i) {
                if (prime[j] == 0)
                    prime[j] = i;
            }
        }
    }
    for (int i = 2; i < MAX; i++) {
 
        // If the number is prime then it's
        // smallest prime factor is the number
        // itself
        if (prime[i] == 0)
            prime[i] = i;
    }
}
 
// Function to return the count of the divisors for
// the product of all the numbers from the array
long long numberOfDivisorsOfProduct(const int* arr,
                                           int n)
{
    memset(prime_count, 0, sizeof(prime_count));
 
    for (int i = 0; i < n; i++) {
        int temp = arr[i];
        while (temp != 1) {
 
            // Increase the count of prime
            // encountered
            prime_count[prime[temp]]++;
            temp = temp / prime[temp];
        }
    }
 
    long long ans = 1;
 
    // Multiplying the count of primes
    // encountered
    for (int i = 2; i < MAX; i++) {
        ans = ans * (prime_count[i] + 1);
    }
 
    return ans;
}
 
// Driver code
int main()
{
    sieve();
    int arr[] = { 2, 4, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << numberOfDivisorsOfProduct(arr, n);
    return 0;
}


Java




// Java implementation of the approach
 
import java.util.Arrays;
 
// Java implementation of the approach
class GFG {
 
    final static int MAX = 10000002;
 
    static int prime[] = new int[MAX];
 
// Array to store count of primes
    static int prime_count[] = new int[MAX];
 
// Function to store smallest prime factor
// of every number till MAX
    static void sieve() {
        Arrays.fill(prime, 0, MAX, 0);
        prime[0] = prime[1] = 1;
        for (int i = 2; i * i < MAX; i++) {
            if (prime[i] == 0) {
                for (int j = i * 2; j < MAX; j += i) {
                    if (prime[j] == 0) {
                        prime[j] = i;
                    }
                }
            }
        }
        for (int i = 2; i < MAX; i++) {
 
            // If the number is prime then it's
            // smallest prime factor is the number
            // itself
            if (prime[i] == 0) {
                prime[i] = i;
            }
        }
    }
 
// Function to return the count of the divisors for
// the product of all the numbers from the array
    static long numberOfDivisorsOfProduct(int[] arr,
            int n) {
        Arrays.fill(prime_count, 0, MAX, 0);
 
        for (int i = 0; i < n; i++) {
            int temp = arr[i];
            while (temp != 1) {
 
                // Increase the count of prime
                // encountered
                prime_count[prime[temp]]++;
                temp = temp / prime[temp];
            }
        }
 
        long ans = 1;
 
        // Multiplying the count of primes
        // encountered
        for (int i = 2; i < MAX; i++) {
            ans = ans * (prime_count[i] + 1);
        }
 
        return ans;
    }
 
// Driver code
    public static void main(String[] args) {
        sieve();
        int arr[] = {2, 4, 6};
        int n = arr.length;
        System.out.println(numberOfDivisorsOfProduct(arr, n));
 
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
MAX = 10000002
prime = [0] * (MAX)
MAX_sqrt = int(MAX ** (0.5))
 
# Array to store count of primes
prime_count = [0] * (MAX)
 
# Function to store smallest prime
# factor in prime[]
def sieve():
 
    prime[0], prime[1] = 1, 1
    for i in range(2, MAX_sqrt):
        if prime[i] == 0:
            for j in range(i * 2, MAX, i):
                if prime[j] == 0:
                    prime[j] = i
     
    for i in range(2, MAX):
 
        # If the number is prime then it's
        # the smallest prime factor is the
        # number itself
        if prime[i] == 0:
            prime[i] = i
 
# Function to return the count of the divisors for
# the product of all the numbers from the array
def numberOfDivisorsOfProduct(arr, n):
 
    for i in range(0, n):
        temp = arr[i]
        while temp != 1:
 
            # Increase the count of prime
            # encountered
            prime_count[prime[temp]] += 1
            temp = temp // prime[temp]
 
    ans = 1
 
    # Multiplying the count of primes
    # encountered
    for i in range(2, len(prime_count)):
        ans = ans * (prime_count[i] + 1)
     
    return ans
 
# Driver code
if __name__ == "__main__":
 
    sieve()
    arr = [2, 4, 6]
    n = len(arr)
    print(numberOfDivisorsOfProduct(arr, n))
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
public class GFG {
 
    static int MAX = 1000000;
 
    static int []prime = new int[MAX];
 
// Array to store count of primes
    static int []prime_count = new int[MAX];
 
// Function to store smallest prime factor
// of every number till MAX
    static void sieve() { 
        for(int i =0;i<MAX;i++)
            prime[i]=0;
        prime[0] = prime[1] = 1;
        for (int i = 2; i * i < MAX; i++) {
            if (prime[i] == 0) {
                for (int j = i * 2; j < MAX; j += i) {
                    if (prime[j] == 0) {
                        prime[j] = i;
                    }
                }
            }
        }
        for (int i = 2; i < MAX; i++) {
 
            // If the number is prime then it's
            // smallest prime factor is the number
            // itself
            if (prime[i] == 0) {
                prime[i] = i;
            }
        }
    }
 
// Function to return the count of the divisors for
// the product of all the numbers from the array
    static long numberOfDivisorsOfProduct(int[] arr,
            int n) { 
        for(int i =0;i<MAX;i++)
            prime_count[i]=0;
        for (int i = 0; i < n; i++) {
            int temp = arr[i];
            while (temp != 1) {
 
                // Increase the count of prime
                // encountered
                prime_count[prime[temp]]++;
                temp = temp / prime[temp];
            }
        }
 
        long ans = 1;
 
        // Multiplying the count of primes
        // encountered
        for (int i = 2; i < MAX; i++) {
            ans = ans * (prime_count[i] + 1);
        }
 
        return ans;
    }
 
// Driver code
    public static void Main() {
        sieve();
        int []arr = {2, 4, 6};
        int n = arr.Length;
        Console.Write(numberOfDivisorsOfProduct(arr, n));
 
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript implementation of the approach
let MAX = 10000002
 
 
let prime = new Array(MAX);
 
// Array to store count of primes
let prime_count = new Array(MAX);
 
// Function to store smallest prime factor
// of every number till MAX
function sieve() {
    prime.fill(0)
    prime[0] = prime[1] = 1;
    for (let i = 2; i * i < MAX; i++) {
        if (prime[i] == 0) {
            for (let j = i * 2; j < MAX; j += i) {
                if (prime[j] == 0)
                    prime[j] = i;
            }
        }
    }
    for (let i = 2; i < MAX; i++) {
 
        // If the number is prime then it's
        // smallest prime factor is the number
        // itself
        if (prime[i] == 0)
            prime[i] = i;
    }
}
 
// Function to return the count of the divisors for
// the product of all the numbers from the array
function numberOfDivisorsOfProduct(arr, n) {
    prime_count.fill(0)
 
    for (let i = 0; i < n; i++) {
        let temp = arr[i];
        while (temp != 1) {
 
            // Increase the count of prime
            // encountered
            prime_count[prime[temp]]++;
            temp = temp / prime[temp];
        }
    }
 
    let ans = 1;
 
    // Multiplying the count of primes
    // encountered
    for (let i = 2; i < MAX; i++) {
        ans = ans * (prime_count[i] + 1);
    }
 
    return ans;
}
 
// Driver code
 
sieve();
let arr = [2, 4, 6];
let n = arr.length;
document.write(numberOfDivisorsOfProduct(arr, n));
 
// This code is contributed by gfgking
</script>


Output: 

10

 

In a memory efficient approach, the array can be replaced by an unordered map to store count of only those primes which have been encountered.
Below is the implementation of the memory efficient approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define MAX 10000002
 
using namespace std;
int prime[MAX];
 
// Map to store count of primes
unordered_map<int, int> prime_count;
 
// Function to store smallest prime factor
// in prime[]
void sieve()
{
    memset(prime, 0, sizeof(prime));
    prime[0] = prime[1] = 1;
    for (int i = 2; i * i < MAX; i++) {
        if (prime[i] == 0) {
            for (int j = i * 2; j < MAX; j += i) {
                if (prime[j] == 0)
                    prime[j] = i;
            }
        }
    }
    for (int i = 2; i < MAX; i++) {
 
        // If the number is prime then
        // it's the smallest prime factor
        // is the number itself
        if (prime[i] == 0)
            prime[i] = i;
    }
}
 
// Function to return the count of the divisors for
// the product of all the numbers from the array
long long numberOfDivisorsOfProduct(const int* arr,
                                            int n)
{
 
    for (int i = 0; i < n; i++) {
        int temp = arr[i];
        while (temp != 1) {
 
            // Increase the count of prime
            // encountered
            prime_count[prime[temp]]++;
            temp = temp / prime[temp];
        }
    }
 
    long long ans = 1;
 
    // Multiplying the count of primes
    // encountered
    unordered_map<int, int>::iterator it;
    for (it = prime_count.begin();
         it != prime_count.end(); it++) {
        ans = ans * (it->second + 1);
    }
 
    return ans;
}
 
// Driver code
int main()
{
    sieve();
    int arr[] = { 3, 5, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << numberOfDivisorsOfProduct(arr, n);
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
class GFG
{
static int MAX = 10000002;
static int []prime = new int[MAX];
 
// Map to store count of primes
static Map<Integer, Integer> prime_count = new HashMap<>();
 
// Function to store smallest prime factor
// in prime[]
static void sieve()
{
    prime[0] = 1;
    prime[1] = 1;
    for (int i = 2; i * i < MAX; i++)
    {
        if (prime[i] == 0)
        {
            for (int j = i * 2; j < MAX; j += i)
            {
                if (prime[j] == 0)
                    prime[j] = i;
            }
        }
    }
    for (int i = 2; i < MAX; i++)
    {
 
        // If the number is prime then
        // it's the smallest prime factor
        // is the number itself
        if (prime[i] == 0)
            prime[i] = i;
    }
}
 
// Function to return the count of the divisors for
// the product of all the numbers from the array
static long numberOfDivisorsOfProduct(int arr[],
                                            int n)
{
 
    for (int i = 0; i < n; i++)
    {
        int temp = arr[i];
        while (temp != 1)
        {
 
            // Increase the count of prime
            // encountered
            if(!prime_count.containsKey(prime[temp]))
            {
                prime_count.put(prime[temp], 0);   
            }
            prime_count.put(prime[temp], prime_count.get(prime[temp]) + 1);
            temp = temp / prime[temp];
        }
    }
    long ans = 1;
 
    // Multiplying the count of primes
    // encountered
    for(Map.Entry<Integer,Integer> it : prime_count.entrySet())
    {
        ans = ans * (it.getValue() + 1);
    }
    return ans;
}
 
// Driver code
public static void main(String []args)
{
    sieve();
    int arr[] = new int[] { 3, 5, 7 };
    int n = arr.length;
    System.out.print(numberOfDivisorsOfProduct(arr, n));
}
}
 
// This code is contributed by rutvik_56.


Python3




# Python3 implementation of the approach
from collections import defaultdict
 
MAX = 10000002
prime = [0] * (MAX)
MAX_sqrt = int(MAX ** (0.5))
 
# Map to store count of primes
prime_count = defaultdict(lambda:0)
 
# Function to store smallest prime
# factor in prime[]
def sieve():
 
    prime[0], prime[1] = 1, 1
    for i in range(2, MAX_sqrt):
        if prime[i] == 0:
            for j in range(i * 2, MAX, i):
                if prime[j] == 0:
                    prime[j] = i
     
    for i in range(2, MAX):
 
        # If the number is prime then
        # it's the smallest prime factor
        # is the number itself
        if prime[i] == 0:
            prime[i] = i
 
# Function to return the count of the divisors for
# the product of all the numbers from the array
def numberOfDivisorsOfProduct(arr, n):
 
    for i in range(0, n):
        temp = arr[i]
        while temp != 1:
 
            # Increase the count of prime
            # encountered
            prime_count[prime[temp]] += 1
            temp = temp // prime[temp]
 
    ans = 1
 
    # Multiplying the count of primes
    # encountered
    for key in prime_count:
        ans = ans * (prime_count[key] + 1)
     
    return ans
 
# Driver code
if __name__ == "__main__":
 
    sieve()
    arr = [3, 5, 7]
    n = len(arr)
    print(numberOfDivisorsOfProduct(arr, n))
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections;
using System.Collections.Generic;
class GFG
{
 
  static int MAX = 10000002;
  static int []prime = new int[MAX];
 
  // Map to store count of primes
  static Dictionary<int,int> prime_count = new Dictionary<int,int>();
 
  // Function to store smallest prime factor
  // in prime[]
  static void sieve()
  {
    prime[0] = 1;
    prime[1] = 1;
    for (int i = 2; i * i < MAX; i++)
    {
      if (prime[i] == 0)
      {
        for (int j = i * 2; j < MAX; j += i)
        {
          if (prime[j] == 0)
            prime[j] = i;
        }
      }
    }
    for (int i = 2; i < MAX; i++)
    {
 
      // If the number is prime then
      // it's the smallest prime factor
      // is the number itself
      if (prime[i] == 0)
        prime[i] = i;
    }
  }
 
  // Function to return the count of the divisors for
  // the product of all the numbers from the array
  static long numberOfDivisorsOfProduct(int []arr,
                                        int n)
  {
 
    for (int i = 0; i < n; i++)
    {
      int temp = arr[i];
      while (temp != 1)
      {
 
        // Increase the count of prime
        // encountered
        if(!prime_count.ContainsKey(prime[temp]))
        {
          prime_count[prime[temp]] = 0;   
        }
        prime_count[prime[temp]] += 1;   
        temp = temp / prime[temp];
      }
    }
    long ans = 1;
 
    // Multiplying the count of primes
    // encountered
    foreach(KeyValuePair<int,int> it in prime_count)
    {
      ans = ans * (it.Value + 1);
    }
    return ans;
  }
 
  // Driver code
  public static void Main(string []args)
  {
    sieve();
    int []arr = new int[] { 3, 5, 7 };
    int n = arr.Length;
    Console.Write(numberOfDivisorsOfProduct(arr, n));
  }
}
 
// This code is contributed by pratham76.


Javascript




<script>
// Javascript implementation of the approach
 
let MAX = 10000002;
 
let prime = new Array(MAX);
for(let i=0;i<MAX;i++)
    prime[i]=0;
 
// Map to store count of primes
let prime_count = new Map();
 
// Function to store smallest prime factor
// in prime[]
function sieve()
{
    prime[0] = 1;
    prime[1] = 1;
    for (let i = 2; i * i < MAX; i++)
    {
        if (prime[i] == 0)
        {
            for (let j = i * 2; j < MAX; j += i)
            {
                if (prime[j] == 0)
                    prime[j] = i;
            }
        }
    }
    for (let i = 2; i < MAX; i++)
    {
  
        // If the number is prime then
        // it's the smallest prime factor
        // is the number itself
        if (prime[i] == 0)
            prime[i] = i;
    }
}
 
// Function to return the count of the divisors for
// the product of all the numbers from the array
function numberOfDivisorsOfProduct(arr,n)
{
    for (let i = 0; i < n; i++)
    {
        let temp = arr[i];
        while (temp != 1)
        {
  
            // Increase the count of prime
            // encountered
            if(!prime_count.has(prime[temp]))
            {
                prime_count.set(prime[temp], 0);  
            }
            prime_count.set(prime[temp], prime_count.get(prime[temp]) + 1);
            temp = Math.floor(temp / prime[temp]);
        }
    }
    let ans = 1;
  
    // Multiplying the count of primes
    // encountered
    for(let it of prime_count.values())
    {
        ans = ans * (it + 1);
    }
    return ans;
}
 
// Driver code
sieve();
let arr = [ 3, 5, 7 ];
let n = arr.length;
document.write(numberOfDivisorsOfProduct(arr, n));
 
// This code is contributed by unknown2108
</script>


Output: 

8

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments