Friday, January 10, 2025
Google search engine
HomeData Modelling & AINumber of Asymmetric Relations on a set of N elements

Number of Asymmetric Relations on a set of N elements

Given a positive integer N, the task is to find the number of Asymmetric Relations in a set of N elements.  Since the number of relations can be very large, print it modulo 109+7.

A relation R on a set A is called Asymmetric if and only if x R y exists, then y R x for every (x, y) € A.
For Example: If set A = {a, b}, then R = {(a, b)} is asymmetric relation.

Examples:

Input: N = 2
Output: 3
Explanation: Considering the set {1, 2}, the total number of possible asymmetric relations are {{}, {(1, 2)}, {(2, 1)}}.

Input: N = 5
Output: 59049

 

Approach: The given problem can be solved based on the following observations:

  • A relation R on a set A is a subset of the Cartesian product of a set, i.e. A * A with N2 elements.
  • There are total N pairs of type (x, x) that are present in the Cartesian product, where any of (x, x) should not be included in the subset.
  • Now, one is left with (N2 – N) elements of the Cartesian product.
  • To satisfy the property of asymmetric relation, one has three possibilities of either to include only of type (x, y) or only of type (y, x) or none from a single group into the subset.
  • Hence, the total number of possible asymmetric relations is equal to 3 (N2 – N) / 2.

Therefore, the idea is to print the value of 3(N2 – N)/2 modulo 109 + 7 as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
const int mod = 1000000007;
 
// Function to calculate
// x^y modulo (10^9 + 7)
int power(long long x,
          unsigned int y)
{
    // Stores the result of x^y
    int res = 1;
 
    // Update x if it exceeds mod
    x = x % mod;
 
    // If x is divisible by mod
    if (x == 0)
        return 0;
 
    while (y > 0) {
 
        // If y is odd, then
        // multiply x with result
        if (y & 1)
            res = (res * x) % mod;
 
        // Divide y by 2
        y = y >> 1;
 
        // Update the value of x
        x = (x * x) % mod;
    }
 
    // Return the final
    // value of x ^ y
    return res;
}
 
// Function to count the number of
// asymmetric relations in a set
// consisting of N elements
int asymmetricRelation(int N)
{
    // Return the resultant count
    return power(3, (N * N - N) / 2);
}
 
// Driver Code
int main()
{
    int N = 2;
    cout << asymmetricRelation(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
final static int mod = 1000000007;
 
// Function to calculate
// x^y modulo (10^9 + 7)
public static int power(int x, int y)
{
     
    // Stores the result of x^y
    int res = 1;
 
    // Update x if it exceeds mod
    x = x % mod;
 
    // If x is divisible by mod
    if (x == 0)
        return 0;
 
    while (y > 0)
    {
         
        // If y is odd, then
        // multiply x with result
        if (y % 2 == 1)
            res = (res * x) % mod;
 
        // Divide y by 2
        y = y >> 1;
         
        // Update the value of x
        x = (x * x) % mod;
    }
 
    // Return the final
    // value of x ^ y
    return res;
}
   
// Function to count the number of
// asymmetric relations in a set
// consisting of N elements
public static int asymmetricRelation(int N)
{
     
    // Return the resultant count
    return power(3, (N * N - N) / 2);
}
   
// Driver code
public static void main (String[] args)
{
    int N = 2;
     
    System.out.print(asymmetricRelation(N));
}
}
 
// This code is contributed by user_qa7r


Python3




# Python3 program for the above approach
mod = 1000000007
 
# Function to calculate
# x^y modulo (10^9 + 7)
def power(x, y):
     
    # Stores the result of x^y
    res = 1
 
    # Update x if it exceeds mod
    x = x % mod
 
    # If x is divisible by mod
    if (x == 0):
        return 0
 
    while (y > 0):
         
        # If y is odd, then
        # multiply x with result
        if (y & 1):
            res = (res * x) % mod;
 
        # Divide y by 2
        y = y >> 1
 
        # Update the value of x
        x = (x * x) % mod
 
    # Return the final
    # value of x ^ y
    return res
 
# Function to count the number of
# asymmetric relations in a set
# consisting of N elements
def asymmetricRelation(N):
     
    # Return the resultant count
    return power(3, (N * N - N) // 2)
 
# Driver Code
if __name__ == '__main__':
     
    N = 2
     
    print(asymmetricRelation(N))
 
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program for the above approach
using System;
 
class GFG{
     
const int mod = 1000000007;
 
// Function to calculate
// x^y modulo (10^9 + 7)
static int power(int x, int y)
{
     
    // Stores the result of x^y
    int res = 1;
 
    // Update x if it exceeds mod
    x = x % mod;
 
    // If x is divisible by mod
    if (x == 0)
        return 0;
 
    while (y > 0)
    {
         
        // If y is odd, then
        // multiply x with result
        if ((y & 1) != 0)
            res = (res * x) % mod;
 
        // Divide y by 2
        y = y >> 1;
 
        // Update the value of x
        x = (x * x) % mod;
    }
 
    // Return the final
    // value of x ^ y
    return res;
}
 
// Function to count the number of
// asymmetric relations in a set
// consisting of N elements
static int asymmetricRelation(int N)
{
     
    // Return the resultant count
    return power(3, (N * N - N) / 2);
}
 
// Driver Code
public static void Main(string[] args)
{
    int N = 2;
    Console.WriteLine(asymmetricRelation(N));
}
}
 
// This code is contributed by ukasp


Javascript




<script>
 
// Javascript program for the above approach
 
var mod = 1000000007;
 
// Function to calculate
// x^y modulo (10^9 + 7)
function power(x, y)
{
    // Stores the result of x^y
    var res = 1;
 
    // Update x if it exceeds mod
    x = x % mod;
 
    // If x is divisible by mod
    if (x == 0)
        return 0;
 
    while (y > 0) {
 
        // If y is odd, then
        // multiply x with result
        if (y & 1)
            res = (res * x) % mod;
 
        // Divide y by 2
        y = y >> 1;
 
        // Update the value of x
        x = (x * x) % mod;
    }
 
    // Return the final
    // value of x ^ y
    return res;
}
 
// Function to count the number of
// asymmetric relations in a set
// consisting of N elements
function asymmetricRelation( N)
{
    // Return the resultant count
    return power(3, (N * N - N) / 2);
}
 
// Driver Code
var N = 2;
document.write( asymmetricRelation(N));
 
 
</script>


Output: 

3

 

Time Complexity: O(N*log N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments