Given a positive integer N, the task is to find the single digit obtained after recursively adding the digits of 2N until a single digit remains.
Examples:
Input: N = 6
Output: 1
Explanation:
26 = 64. Sum of digits = 10.
Now, Sum of digits = 10. Therefore, sum is 1.Input: N = 10
Output: 7
Explanation: 210 = 1024. Sum of digits = 7.
Naive Approach: The simplest approach to solve the problem is to calculate the value of 2N and then, keep calculating the sum of digits of number until the sum reduces to a single digit.
Time Complexity: O(log(2N))
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized based on the following observations:
After performing the operation for different values of N, it can be observed that the value repeats after every 6 numbers in the following manner:
- If N % 6 = 0, then the single digit sum will be equal to 1.
- If N % 6 = 1, then the single digit sum will be equal to 2.
- If N % 6 = 2, then the single digit sum will be equal to 4.
- If N % 6 = 3, then the single digit sum will be equal to 8.
- If N % 6 = 4, then the single digit sum will be equal to 7.
- If N % 6 = 5, then the single digit sum will be equal to 5.
Follow the steps below to solve the problem:
- If N % 6 is 0 then print 1.
- Otherwise, if N % 6 is 1 then print 2.
- Otherwise, if N % 6 is 2 then print 7.
- Otherwise, if N % 6 is 3 then print 8.
- Otherwise, if N % 6 is 4 then print 7.
- Otherwise, if N % 6 is 5 then print 5.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the number obtained // by reducing sum of digits of 2 ^ N // into a single digit int findNumber( int N) { // Stores answers for // different values of N int ans[6] = { 1, 2, 4, 8, 7, 5 }; return ans[N % 6]; } // Driver Code int main() { int N = 6; cout << findNumber(N) << endl; return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the number obtained // by reducing sum of digits of 2 ^ N // into a single digit static int findNumber( int N) { // Stores answers for // different values of N int []ans = { 1 , 2 , 4 , 8 , 7 , 5 }; return ans[N % 6 ]; } // Driver Code public static void main(String args[]) { int N = 6 ; System.out.println(findNumber(N)); } } // This code is contributed by ipg2016107 |
Python3
# Python3 program for the above approach # Function to find the number obtained # by reducing sum of digits of 2 ^ N # into a single digit def findNumber(N): # Stores answers for # different values of N ans = [ 1 , 2 , 4 , 8 , 7 , 5 ] return ans[N % 6 ] # Driver Code if __name__ = = "__main__" : N = 6 print (findNumber(N)) # This code is contributed by ukasp |
C#
// C# program for the above approach using System; class GFG{ // Function to find the number obtained // by reducing sum of digits of 2 ^ N // into a single digit static int findNumber( int N) { // Stores answers for // different values of N int []ans = {1, 2, 4, 8, 7, 5}; return ans[N % 6]; } // Driver Code public static void Main() { int N = 6; Console.WriteLine(findNumber(N)); } } // This code is contributed by mohit kumar 29 |
Javascript
<script> // JavaScript program for the above approach // Function to find the number obtained // by reducing sum of digits of 2 ^ N // into a single digit function findNumber(N) { // Stores answers for // different values of N let ans = [ 1, 2, 4, 8, 7, 5 ]; return ans[N % 6]; } // Driver Code let N = 6; document.write(findNumber(N) + "<br>" ); // This code is contributed by Surbhi Tyagi. </script> |
1
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!