Friday, January 10, 2025
Google search engine
HomeData Modelling & AINumber obtained by reducing sum of digits of 2N into a single...

Number obtained by reducing sum of digits of 2N into a single digit

Given a positive integer N, the task is to find the single digit obtained after recursively adding the digits of 2N until a single digit remains.

Examples:

Input: N = 6
Output: 1
Explanation: 
26 = 64. Sum of digits = 10.
Now, Sum of digits = 10. Therefore, sum is 1.

Input: N = 10
Output: 7
Explanation: 210 = 1024. Sum of digits = 7.

Naive Approach: The simplest approach to solve the problem is to calculate the value of 2N and then, keep calculating the sum of digits of number until the sum reduces to a single digit. 

Time Complexity: O(log(2N))
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized based on the following observations:

After performing the operation for different values of N, it can be observed that the value repeats after every 6 numbers in the following manner:

  • If N % 6 = 0, then the single digit sum will be equal to 1.
  • If N % 6 = 1, then the single digit sum will be equal to 2.
  • If N % 6 = 2, then the single digit sum will be equal to 4.
  • If N % 6 = 3, then the single digit sum will be equal to 8.
  • If N % 6 = 4, then the single digit sum will be equal to 7.
  • If N % 6 = 5, then the single digit sum will be equal to 5.

Follow the steps below to solve the problem:

  • If N % 6 is 0 then print 1.
  • Otherwise, if N % 6 is 1 then print 2.
  • Otherwise, if N % 6 is 2 then print 7.
  • Otherwise, if N % 6 is 3 then print 8.
  • Otherwise, if N % 6 is 4 then print 7.
  • Otherwise, if N % 6 is 5 then print 5.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number obtained
// by reducing sum of digits of 2 ^ N
// into a single digit
int findNumber(int N)
{
    // Stores answers for
    // different values of N
    int ans[6] = { 1, 2, 4, 8, 7, 5 };
 
    return ans[N % 6];
}
 
// Driver Code
int main()
{
    int N = 6;
    cout << findNumber(N) << endl;
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
  
// Function to find the number obtained
// by reducing sum of digits of 2 ^ N
// into a single digit
static int findNumber(int N)
{
     
    // Stores answers for
    // different values of N
    int []ans = {1, 2, 4, 8, 7, 5};
 
    return ans[N % 6];
}
 
// Driver Code
public static void main(String args[])
{
    int N = 6;
     
    System.out.println(findNumber(N));
}
}
 
// This code is contributed by ipg2016107


Python3




# Python3 program for the above approach
 
# Function to find the number obtained
# by reducing sum of digits of 2 ^ N
# into a single digit
def findNumber(N):
 
    # Stores answers for
    # different values of N
    ans = [ 1, 2, 4, 8, 7, 5 ]
 
    return ans[N % 6]
 
# Driver Code
if __name__ == "__main__":
  
    N = 6
     
    print (findNumber(N))
 
# This code is contributed by ukasp


C#




// C# program for the above approach
using System;
 
class GFG{
  
// Function to find the number obtained
// by reducing sum of digits of 2 ^ N
// into a single digit
static int findNumber(int N)
{
     
    // Stores answers for
    // different values of N
    int []ans = {1, 2, 4, 8, 7, 5};
 
    return ans[N % 6];
}
 
// Driver Code
public static void Main()
{
    int N = 6;
     
    Console.WriteLine(findNumber(N));
}
}
 
// This code is contributed by mohit kumar 29


Javascript




<script>
// JavaScript program for the above approach
 
// Function to find the number obtained
// by reducing sum of digits of 2 ^ N
// into a single digit
function findNumber(N)
{
 
    // Stores answers for
    // different values of N
    let ans = [ 1, 2, 4, 8, 7, 5 ];
    return ans[N % 6];
}
 
// Driver Code
    let N = 6;
    document.write(findNumber(N) + "<br>");
 
// This code is contributed by Surbhi Tyagi.
</script>


Output: 

1

 

Time Complexity: O(1)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments