Given two integers N and K, the task is to find the Nth Subset from the sequence of subsets generated from the powers of K i.e. {1, K1, K2, K3, …..} such that the subsets are arranged in increasing order of their sum, the task is to find the Nth subset from the sequence.
Examples:
Input: N = 5, K = 3
Output: 1 9
Explanation:
The sequence of subsets along with their sum are:
- Subset = {1}, Sum = 1
- Subset = {3}, Sum = 3
- Subset = {1, 3}, Sum = 4
- Subset = {9}, Sum = 9
- Subset = {1, 9}, Sum = 10
Therefore, the subset at position 5 is {1, 9}.
Input: N = 4, K = 4
Output: 16
Approach:
Let’s refer to the required sequence for K = 3 given below:
From the above sequence, it can be observed that the subset {3} has position 2, the subset {9} has position 4, and the subset {27} has position 8, and so on. The subset {1, 3}, {1, 9}, {1, 27} occupies positions 3, 5, and 9 respectively. Hence, all the elements of the required Nth subset can be obtained by finding the nearest power of 2 which is smaller than or equal to N.
Illustration:
N = 6, K = 3
1st iteration:
- p = log2(6) = 2
- 32 = 9, Subset = {9}
- N = 6 % 4 = 2
2nd iteration:
- p = log2(2) = 1
- 31 = 3, Subset = {3, 9}
- N = 2 % 2 = 0
Therefore, the required subset is {3, 9}
Follow the steps below to solve the problem:
- Calculate the nearest power of 2 which is smaller than or equal to N, say p. Therefore, p = log2N.
- Now, the element of the subset will be Kp. Insert it into the front of the subset.
- Update N to N % 2p.
- Repeat the above steps until N becomes 0, and consequently print the obtained subset.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> #include <stdio.h> using namespace std; #define lli long long int // Function to print the // required N-th subset void printSubset(lli n, int k) { vector<lli> answer; while (n > 0) { // Nearest power of 2<=N lli p = log2(n); // Now insert k^p in the answer answer.push_back( pow (k, p)); // update n n %= ( int ) pow (2, p); } // Print the ans in sorted order reverse(answer.begin(), answer.end()); for ( auto x: answer) { cout << x << " " ; } } // Driver Code int main() { lli n = 5; int k = 4; printSubset(n, k); } // This code is contributed by winter_soldier |
Java
// Java program for above approach import java.util.*; import java.lang.*; import java.io.*; class GFG { // Function to print the // required N-th subset static void printSubset( long n, int k) { ArrayList<Long> answer = new ArrayList<>(); while (n > 0 ) { // Nearest power of 2<=N long p = ( long )(Math.log(n) / Math.log( 2 ));; // Now insert k^p in the answer answer.add(( long )(Math.pow(k, p))); // update n n %= ( int )Math.pow( 2 , p); } // Print the ans in sorted order Collections.sort(answer); for (Long x: answer) { System.out.print(x + " " ); } } // Driver function public static void main (String[] args) { long n = 5 ; int k = 4 ; printSubset(n, k); } } // This code is contributed by offbeat |
Python3
# Python3 program for # the above approach import math # Function to print the # required N-th subset def printSubset(N, K): # Stores the subset answer = "" while (N > 0 ): # Nearest power of 2 <= N p = int (math.log(N, 2 )) # Insert K ^ p in the subset answer = str (K * * p) + " " + answer # Update N N = N % ( 2 * * p) # Print the subset print (answer) # Driver Code N = 5 K = 4 printSubset(N, K) |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to print the // required N-th subset static void printSubset( int n, int k) { List< int > answer = new List< int >(); while (n > 0) { // Nearest power of 2<=N int p = ( int )Math.Log(n,2); // Now insert k^p in the answer answer.Add(( int )Math.Pow(k, p)); // update n n %= ( int )Math.Pow(2, p); } // Print the ans in sorted order answer.Reverse(); foreach ( int x in answer) { Console.Write(x + " " ); } } // Driver code static void Main() { int n = 5; int k = 4; printSubset(n, k); } } // This code is contributed by divyeshrabadiya07. |
Javascript
<script> // Javascript program for the above approach // Function to print the // required N-th subset function printSubset(n, k) { var answer = []; while (n > 0) { // Nearest power of 2<=N var p = parseInt(Math.log2(n)); // Now insert k^p in the answer answer.push(Math.pow(k, p)); // update n n %= parseInt(Math.pow(2, p)); } // Print the ans in sorted order answer.sort(); //reverse(answer.begin(), answer.end()); for ( var i=0;i<answer.length;i++) { document.write(answer[i] + " " ); } } var n = 5; var k = 4; printSubset(n, k); //This code is contributed by SoumikMondal </script> |
1 16
Time Complexity: O(logN)
Auxiliary Space: O(logN)
Approach:
- Initialize the count and x by 0. Also, a vector to store the elements of the subsets.
- Do the following while n is greater than 0.
- Set x = n & 1, for finding if the last bit of the number is set or not.
- Now Push element 3count into the subset if n is not 0.
- Reduce the number n by two with the help of right shifting by 1 unit.
- Increase the count value by 1.
- Finally, the elements in the array are the elements of the Nth subset.
Below is the implementation of the above approach:
C++
// C++ program to print subset // at the nth position ordered // by the sum of the elements #include <bits/stdc++.h> using namespace std; // Function to print the elements of // the subset at pos n void printsubset( int n, int k) { // Initialize count=0 and x=0 int count = 0, x = 0; // create a vector for // storing the elements // of subsets vector< int > vec; // doing until all the // set bits of n are used while (n) { x = n & 1; // this part is executed only // when the last bit is // set if (x) { vec.push_back( pow (k, count)); } // right shift the bit by one position n = n >> 1; // increasing the count each time by one count++; } // printing the values os elements for ( int i = 0; i < vec.size(); i++) cout << vec[i] << " " ; } // Driver Code int main() { int n = 7,k=4; printsubset(n,k); return 0; } // This code is contributed by shivkant |
Java
// Java program to print subset // at the nth position ordered // by the sum of the elements import java.util.*; import java.lang.*; class GFG{ // Function to print the // elements of the subset // at pos n static void printsubset( int n, int k) { // Initialize count=0 and x=0 int count = 0 , x = 0 ; // Create a vector for // storing the elements // of subsets ArrayList<Integer> vec = new ArrayList<>(); // Doing until all the // set bits of n are used while (n != 0 ) { x = n & 1 ; // This part is executed only // when the last bit is // set if (x != 0 ) { vec.add(( int )Math.pow(k, count)); } // Right shift the bit // by one position n = n >> 1 ; // Increasing the count // each time by one count++; } // Printing the values os elements for ( int i = 0 ; i < vec.size(); i++) System.out.print(vec.get(i) + " " ); } // Driver function public static void main (String[] args) { int n = 7 , k = 4 ; printsubset(n, k); } } // This code is contributed by offbeat |
Python3
# Python3 program to print subset # at the nth position ordered # by the sum of the elements import math # Function to print the elements of # the subset at pos n def printsubset(n, k): # Initialize count=0 and x=0 count = 0 x = 0 # Create a vector for # storing the elements # of subsets vec = [] # Doing until all the # set bits of n are used while (n > 0 ): x = n & 1 # This part is executed only # when the last bit is # set if (x): vec.append( pow (k, count)) # Right shift the bit by one position n = n >> 1 # Increasing the count each time by one count + = 1 # Printing the values os elements for item in vec: print (item, end = " " ) # Driver Code n = 7 k = 4 printsubset(n, k) # This code is contributed by Stream_Cipher |
C#
// C# program to print subset // at the nth position ordered // by the sum of the elements using System.Collections.Generic; using System; class GFG{ // Function to print the // elements of the subset // at pos n static void printsubset( int n, int k) { // Initialize count=0 and x=0 int count = 0, x = 0; // Create a vector for // storing the elements // of subsets List< int > vec = new List< int >(); // Doing until all the // set bits of n are used while (n != 0) { x = n & 1; // This part is executed only // when the last bit is // set if (x != 0) { vec.Add(( int )Math.Pow(k, count)); } // Right shift the bit // by one position n = n >> 1; // Increasing the count // each time by one count++; } // Printing the values os elements for ( int i = 0; i < vec.Count; i++) Console.Write(vec[i] + " " ); } // Driver code public static void Main () { int n = 7, k = 4; printsubset(n, k); } } // This code is contributed by Stream_Cipher |
Javascript
<script> // Javascript program to print subset // at the nth position ordered // by the sum of the elements // Function to print the // elements of the subset // at pos n function printsubset(n, k) { // Initialize count=0 and x=0 let count = 0, x = 0; // Create a vector for // storing the elements // of subsets let vec = []; // Doing until all the // set bits of n are used while (n != 0) { x = n & 1; // This part is executed only // when the last bit is // set if (x != 0) { vec.push(Math.pow(k, count)); } // Right shift the bit // by one position n = n >> 1; // Increasing the count // each time by one count++; } // Printing the values os elements for (let i = 0; i < vec.length; i++) document.write(vec[i] + " " ); } let n = 7, k = 4; printsubset(n, k); </script> |
1 4 16
Time Complexity: O(log2N)
Auxiliary Space: O(log2N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!