Given two integers N and K, the task is to find the Nth root of the K.
Examples:
Input: N = 3, K = 8
Output: 2.00
Explanation:
Cube root of 8 is 2. i.e. 23 = 8Input: N = 2, K = 16
Output: 4.00
Explanation:
Square root of 16 is 4, i.e. 42 = 16
Approach: The idea is to use logarithmic function to find the Nth root of K.
Let D be our Nth root of the K,
Then,
Apply logK on both the sides –
=>
=>
=>
Below is the implementation of the above approach:
C++
// C++ implementation to find the // Kth root of a number using log #include <bits/stdc++.h> // Function to find the Kth root // of the number using log function double kthRoot( double n, int k) { return pow (k, (1.0 / k) * ( log (n) / log (k))); } // Driver Code int main( void ) { double n = 81; int k = 4; printf ( "%lf " , kthRoot(n, k)); return 0; } |
Java
// Java implementation to find the // Kth root of a number using log import java.util.*; class GFG { // Function to find the Kth root // of the number using log function static double kthRoot( double n, int k) { return Math.pow(k, (( 1.0 / k) * (Math.log(n) / Math.log(k)))); } // Driver Code public static void main(String args[]) { double n = 81 ; int k = 4 ; System.out.printf( "%.6f" , kthRoot(n, k)); } } // This code is contributed by rutvik_56 |
Python3
# Python3 implementation to find the # Kth root of a number using log import numpy as np # Function to find the Kth root # of the number using log function def kthRoot(n, k): return pow (k, (( 1.0 / k) * (np.log(n) / np.log(k)))) # Driver Code n = 81 k = 4 print ( "%.6f" % kthRoot(n, k)) # This code is contributed by PratikBasu |
C#
// C# implementation to find the // Kth root of a number using log using System; class GFG { // Function to find the Kth root // of the number using log function static double kthRoot( double n, int k) { return Math.Pow(k, ((1.0 / k) * (Math.Log(n) / Math.Log(k)))); } // Driver Code public static void Main(String []args) { double n = 81; int k = 4; Console.Write( "{0:F6}" , kthRoot(n, k)); } } // This code is contributed by AbhiThakur |
Javascript
<script> // Javascript implementation to find the // Kth root of a number using log // Function to find the Kth root // of the number using log function function kthRoot(n, k) { return Math.pow(k, ((1.0 / k) * (Math.log(n) / Math.log(k)))); } // Driver Code var n = 81; var k = 4; var x = kthRoot(n, k) document.write(x.toFixed(6)); // This code is contributed by Ankita saini </script> |
3.000000
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!