Friday, January 31, 2025
Google search engine
HomeData Modelling & AINth positive number whose absolute difference of adjacent digits is at most...

Nth positive number whose absolute difference of adjacent digits is at most 1

Given a number N, the task is to find the Nth number which has an absolute difference of 1 between every pair of its adjacent digits.
Examples: 
 

Input : N = 5 
Output :
Explanation: 
The first 5 such numbers are 1,2,3,4 and 5.
Input : N = 15 
Output : 23 
Explanation: 
The first 15 such numbers are 1,2,3,4,5,6,7,8,9,10,11,12,21,22 and 23
 

 

Approach: In order to solve this problem we are using the Queue data structure. 
 

  • Prepare an empty Queue, and Enqueue all integers 1 to 9 in increasing order. 
     
  • Now perform the following operation N times. 
    • Dequeue and store in array arr which stores ith number of required type in arr[i].
    • If (arr[i] % 10 != 0), then enqueue 10 * arr[i] + (arr[i] % 10) – 1.
    • Enqueue 10 * arr[i] + (arr[i] % 10).
    • If (arr[i] % 10 != 9), then enqueue 10 * arr[i] + (arr[i] % 10) + 1.
  • Return arr[N] as the answer.

Below is the implementation of the given approach: 
 

C++




// C++ Program to find Nth number with
// absolute difference between all
// adjacent digits at most 1.
 
#include <bits/stdc++.h>
using namespace std;
 
 
// Return Nth number with
// absolute difference between all
// adjacent digits at most 1.
void findNthNumber(int N)
{
    // To store all such numbers
    long long arr[N + 1];
     
    queue<long long> q;
 
    // Enqueue all integers from 1 to 9
    // in increasing order.
    for (int i = 1; i <= 9; i++)
        q.push(i);
 
    // Perform the operation N times so that
    // we can get all such N numbers.
    for (int i = 1; i <= N; i++) {
 
        // Store the front element of queue,
        // in array and pop it from queue.
        arr[i] = q.front();
        q.pop();
 
        // If the last digit of dequeued integer is
        // not 0, then enqueue the next such number.
        if (arr[i] % 10 != 0)
            q.push(arr[i] * 10 + arr[i] % 10 - 1);
 
        // Enqueue the next such number
        q.push(arr[i] * 10 + arr[i] % 10);
 
        // If the last digit of dequeued integer is
        // not 9, then enqueue the next such number.
        if (arr[i] % 10 != 9)
            q.push(arr[i] * 10 + arr[i] % 10 + 1);
    }
     
    cout<<arr[N]<<endl;
}
 
// Driver Code
int main()
{
    int N = 21;
    findNthNumber(N);
    return 0;
}


Java




// Java program to find Nth number with
// absolute difference between all
// adjacent digits at most 1.
import java.util.*;
 
class GFG{
 
// Return Nth number with
// absolute difference between all
// adjacent digits at most 1.
static void findNthNumber(int N)
{
     
    // To store all such numbers
    int []arr = new int[N + 1];
     
    Queue<Integer> q = new LinkedList<>();
 
    // Enqueue all integers from 1 to 9
    // in increasing order.
    for(int i = 1; i <= 9; i++)
       q.add(i);
 
    // Perform the operation N times so
    // that we can get all such N numbers.
    for(int i = 1; i <= N; i++)
    {
        
       // Store the front element of queue,
       // in array and pop it from queue.
       arr[i] = q.peek();
       q.remove();
        
       // If the last digit of dequeued
       // integer is not 0, then enqueue
       // the next such number.
       if (arr[i] % 10 != 0)
           q.add(arr[i] * 10 + arr[i] % 10 - 1);
        
       // Enqueue the next such number
       q.add(arr[i] * 10 + arr[i] % 10);
        
       // If the last digit of dequeued
       // integer is not 9, then enqueue
       // the next such number.
       if (arr[i] % 10 != 9)
           q.add(arr[i] * 10 + arr[i] % 10 + 1);
    }
    System.out.println(arr[N]);
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 21;
     
    findNthNumber(N);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python 3 Program to find Nth number with
# absolute difference between all
# adjacent digits at most 1.
 
# Return Nth number with
# absolute difference between all
# adjacent digits at most 1.
def findNthNumber(N):
     
    # To store all such numbers
    arr = [0 for i in range(N + 1)]
     
    q = []
 
    # Enqueue all integers from 1 to 9
    # in increasing order.
    for i in range(1, 10, 1):
        q.append(i)
 
    # Perform the operation N times so that
    # we can get all such N numbers.
    for i in range(1, N+1, 1):
         
        # Store the front element of queue,
        # in array and pop it from queue.
        arr[i] = q[0]
        q.remove(q[0])
 
        # If the last digit of dequeued integer is
        # not 0, then enqueue the next such number.
        if (arr[i] % 10 != 0):
            q.append(arr[i] * 10 + arr[i] % 10 - 1)
 
        # Enqueue the next such number
        q.append(arr[i] * 10 + arr[i] % 10)
 
        # If the last digit of dequeued integer is
        # not 9, then enqueue the next such number.
        if (arr[i] % 10 != 9):
            q.append(arr[i] * 10 + arr[i] % 10 + 1)
     
    print(arr[N])
 
# Driver Code
if __name__ == '__main__':
     
    N = 21
    findNthNumber(N)
 
# This code is contributed by Samarth


C#




// C# program to find Nth number with
// absolute difference between all
// adjacent digits at most 1.
using System;
using System.Collections.Generic;
 
class GFG{
 
// Return Nth number with
// absolute difference between all
// adjacent digits at most 1.
static void findNthNumber(int N)
{
     
    // To store all such numbers
    int []arr = new int[N + 1];
     
    Queue<int> q = new Queue<int>();
 
    // Enqueue all integers from 1 to 9
    // in increasing order.
    for(int i = 1; i <= 9; i++)
       q.Enqueue(i);
 
    // Perform the operation N times so
    // that we can get all such N numbers.
    for(int i = 1; i <= N; i++)
    {
        
       // Store the front element of queue,
       // in array and pop it from queue.
       arr[i] = q.Peek();
       q.Dequeue();
        
       // If the last digit of dequeued
       // integer is not 0, then enqueue
       // the next such number.
       if (arr[i] % 10 != 0)
           q.Enqueue(arr[i] * 10 +
                     arr[i] % 10 - 1);
        
       // Enqueue the next such number
       q.Enqueue(arr[i] * 10 + arr[i] % 10);
        
       // If the last digit of dequeued
       // integer is not 9, then enqueue
       // the next such number.
       if (arr[i] % 10 != 9)
           q.Enqueue(arr[i] * 10 +
                     arr[i] % 10 + 1);
    }
    Console.WriteLine(arr[N]);
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 21;
     
    findNthNumber(N);
}
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
 
    // JavaScript program to find Nth number with
    // absolute difference between all
    // adjacent digits at most 1.
     
    // Return Nth number with
    // absolute difference between all
    // adjacent digits at most 1.
    function findNthNumber(N)
    {
 
        // To store all such numbers
        let arr = new Array(N + 1);
 
        let q = [];
 
        // Enqueue all integers from 1 to 9
        // in increasing order.
        for(let i = 1; i <= 9; i++)
           q.push(i);
 
        // Perform the operation N times so
        // that we can get all such N numbers.
        for(let i = 1; i <= N; i++)
        {
 
           // Store the front element of queue,
           // in array and pop it from queue.
           arr[i] = q[0];
           q.shift();
 
           // If the last digit of dequeued
           // integer is not 0, then enqueue
           // the next such number.
           if (arr[i] % 10 != 0)
               q.push(arr[i] * 10 + arr[i] % 10 - 1);
 
           // Enqueue the next such number
           q.push(arr[i] * 10 + arr[i] % 10);
 
           // If the last digit of dequeued
           // integer is not 9, then enqueue
           // the next such number.
           if (arr[i] % 10 != 9)
               q.push(arr[i] * 10 + arr[i] % 10 + 1);
        }
        document.write(arr[N] + "</br>");
    }
     
    let N = 21;
      
    findNthNumber(N);
 
</script>


Output: 

45

 

Time Complexity: O(N)

Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments