Thursday, January 16, 2025
Google search engine
HomeData Modelling & AINth number in a set of multiples of A , B or...

Nth number in a set of multiples of A , B or C

Given four integers N, A, B, and C. The task is to print the Nth number in the set containing the multiples of A, B, or C
Examples: 

Input: A = 2, B = 3, C = 5, N = 8 
Output: 10 
2, 3, 4, 5, 6, 8, 9, 10, 12, 14, …
Input: A = 2, B = 3, C = 5, N = 100 
Output: 136 

Naive approach: Start traversing from 1 until we find the Nth element which is divisible by either A, B, or C.
Efficient approach: Given a number, we can find the count of the divisors of either A, B, or C. Now, binary search can be used to find the Nth number divisible by either A, B, or C.
So, if the number is num then 
count = (num/A) + (num/B) + (num/C) – (num/lcm(A, B)) – (num/lcm(C, B)) – (num/lcm(A, C)) – (num/lcm(A, B, C))
Below is the implementation of the above approach: 

C++




// C++ program to find nth term
// divisible by a, b or c
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return
// gcd of a and b
int gcd(int a, int b)
{
    if (a == 0)
        return b;
 
    return gcd(b % a, a);
}
 
long gcd_ab, gcd_bc, gcd_ac, lcm_abc, lcm_ab, lcm_bc, lcm_ac;
 
void preCal(long a, long b, long c) {
    gcd_ab = gcd(a, b); // GCD of a, b
    gcd_bc = gcd(c, b); // GCD of b, c
    gcd_ac = gcd(a, c); // GCD of a, c
    lcm_ab = ((a * b) / gcd_ab); // LCM of a, b
    lcm_bc = ((c * b) / gcd_bc); // LCM of b, c
    lcm_ac = ((a * c) / gcd_ac); // LCM of a, c
    lcm_abc = (lcm_ab * c) / gcd(lcm_ab, c);  // LCM of a, b, c
}
 
// Function to return the count of integers
// from the range [1, num] which are
// divisible by either a, b or c
long divTermCount(long a, long b, long c, long num)
{
    // Calculate the number of terms divisible by a, b
    // and c then remove the terms which are divisible
    // by both (a, b) or (b, c) or (c, a) and then
    // add the numbers which are divisible by a, b and c
    return ((num / a) + (num / b) + (num / c)
            - (num / lcm_ab)
            - (num / lcm_bc)
            - (num / lcm_ac)
            + (num / lcm_abc));
}
 
// Function for binary search to find the
// nth term divisible by a, b or c
int findNthTerm(int a, int b, int c, long n)
{
    // Set low to (gcd(a, b, c) * n) and high to (max(a, b, c) * n)
      // (gcd(a, b, c) * n) is lowest possible value till index 'n'
      // (max(a, b, c) * n) is highest possible value till index 'n'
    preCal(a, b, c);
    long low = 1, high, mid;
    high = max(a, max(b, c)) * n;
    low = gcd(a, gcd_bc) * n;
 
    while (low < high) {
        mid = low + (high - low) / 2;
 
        // If the current term is less than
        // n then we need to increase low
        // to mid + 1
        if (divTermCount(a, b, c, mid) < n)
            low = mid + 1;
 
        // If current term is greater than equal to
        // n then high = mid
        else
            high = mid;
    }
 
    return low;
}
 
// Driver code
int main()
{
    long a = 2, b = 3, c = 5, n = 100;
 
    cout << findNthTerm(a, b, c, n);
 
    return 0;
}
 
// This code was improved by sharad_jain


Java




// Java program to find nth term
// divisible by a, b or c
class GFG
{
      static long gcd_ab, gcd_bc, gcd_ac, lcm_abc, lcm_ab, lcm_bc, lcm_ac;
 
    // Function to return
    // gcd of a and b
    static long gcd(long a, long b)
    {
        if (a == 0)
        {
            return b;
        }
        return gcd(b % a, a);
    }
 
    static void preCal(long a, long b, long c) {
        gcd_ab = gcd(a, b); // GCD of a, b
        gcd_bc = gcd(c, b); // GCD of b, c
        gcd_ac = gcd(a, c); // GCD of a, c
        lcm_ab = ((a * b) / gcd_ab); // LCM of a, b
        lcm_bc = ((c * b) / gcd_bc); // LCM of b, c
        lcm_ac = ((a * c) / gcd_ac); // LCM of a, c
        lcm_abc = (lcm_ab * c) / gcd(lcm_ab, c);  // LCM of a, b, c
    }
 
    // Function to return the count of integers
    // from the range [1, num] which are
    // divisible by either a, b or c
    static long divTermCount(long a, long b,
                             long c, long num)
    {
        // Calculate the number of terms divisible by a, b
        // and c then remove the terms which are divisible
        // by both (a, b) or (b, c) or (c, a) and then
        // add the numbers which are divisible by a, b and c
        return ((num / a) + (num / b) + (num / c)
                - (num / lcm_ab)
                - (num / lcm_bc)
                - (num / lcm_ac)
                + (num / lcm_abc));
    }
 
    // Function for binary search to find the
    // nth term divisible by a, b or c
    static long findNthTerm(int a, int b, int c, long n)
    {
        // Set low to (gcd(a, b, c) * n) and high to (max(a, b, c) * n)
        // (gcd(a, b, c) * n) is lowest possible value till index 'n'
        // (max(a, b, c) * n) is highest possible value till index 'n'
        preCal(a, b, c);
        long low = 1, high, mid;
        high = a > b ? (a > c ? a : c) : (b > c ? b : c);
          high = high * n;
        low = gcd(a, gcd_bc) * n;
 
        while (low < high)
        {
            mid = low + (high - low) / 2;
 
            // If the current term is less than
            // n then we need to increase low
            // to mid + 1
            if (divTermCount(a, b, c, mid) < n)
            {
                low = mid + 1;
            }
             
            // If current term is greater than equal to
            // n then high = mid
            else
            {
                high = mid;
            }
        }
        return low;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int a = 2, b = 3, c = 5, n = 100;
 
        System.out.println(findNthTerm(a, b, c, n));
    }
}
 
// This code is contributed by 29AjayKumar
// This code was improved by sharad_jain


Python3




# Python3 program to find nth term
# divisible by a, b or c
import sys
 
# Function to return gcd of a and b
def gcd(a, b):
 
    if (a == 0):
        return b;
 
    return gcd(b % a, a);
   
gcd_ab = 1; gcd_bc = 1; gcd_ac = 1; gcd_abc = 1;
 
def preCal(a, b, c):
    gcd_ab = gcd(a, b);  # GCD of a, b
    gcd_bc = gcd(c, b);  # GCD of b, c
    gcd_ac = gcd(a, c);  # GCD of a, c
    gcd_abc = gcd(((a*b)/gcd_ab), c);  # GCD of a, b, c
 
# Function to return the count of integers
# from the range [1, num] which are
# divisible by either a, b or c
def divTermCount(a, b, c, num):
     
    # Calculate the number of terms divisible by a, b
    # and c then remove the terms which are divisible
    # by both (a, b) or (b, c) or (c, a) and then
    # add the numbers which are divisible by a, b and c
    return ((num / a) + (num / b) + (num / c)
            - (num / ((a * b) / gcd_ab))
            - (num / ((c * b) / gcd_bc))
            - (num / ((a * c) / gcd_ac))
            + (num / ((((a*b)/gcd_ab)* c) / gcd_abc)));
 
# Function for binary search to find the
# nth term divisible by a, b or c
def findNthTerm(a, b, c, n):
 
    # Set low to (gcd(a, b, c) * n) and high to (max(a, b, c) * n)
      # (gcd(a, b, c) * n) is lowest possible value till index 'n'
      # (max(a, b, c) * n) is highest possible value till index 'n'
    preCal(a, b, c);
    mid = 0;
    high = max(a, max(b, c)) * n;
    low = gcd_abc * n;
 
    while (low < high):
        mid = low + (high - low) / 2;
 
        # If the current term is less than
        # n then we need to increase low
        # to mid + 1
        if (divTermCount(a, b, c, mid) < n):
            low = mid + 1;
 
        # If current term is greater than equal to
        # n then high = mid
        else:
            high = mid;
     
    return int(low);
 
# Driver code
a = 2; b = 3; c = 5; n = 100;
 
print(findNthTerm(a, b, c, n));
 
# This code is contributed by 29AjayKumar
# This code was improved by sharad_jain


C#




// C# program to find nth term
// divisible by a, b or c
using System;
 
class GFG
{
      static long gcd_ab, gcd_bc, gcd_ac, lcm_abc, lcm_ab, lcm_bc, lcm_ac;
 
    // Function to return
    // gcd of a and b
    static long gcd(long a, long b)
    {
        if (a == 0)
        {
            return b;
        }
        return gcd(b % a, a);
    }
 
    static void preCal(long a, long b, long c) {
        gcd_ab = gcd(a, b); // GCD of a, b
        gcd_bc = gcd(c, b); // GCD of b, c
        gcd_ac = gcd(a, c); // GCD of a, c
        lcm_ab = ((a * b) / gcd_ab); // LCM of a, b
        lcm_bc = ((c * b) / gcd_bc); // LCM of b, c
        lcm_ac = ((a * c) / gcd_ac); // LCM of a, c
        lcm_abc = (lcm_ab * c) / gcd(lcm_ab, c);  // LCM of a, b, c
    }
 
    // Function to return the count of integers
    // from the range [1, num] which are
    // divisible by either a, b or c
    static long divTermCount(long a, long b,
                             long c, long num)
    {
        // Calculate the number of terms divisible by a, b
        // and c then remove the terms which are divisible
        // by both (a, b) or (b, c) or (c, a) and then
        // add the numbers which are divisible by a, b and c
        return ((num / a) + (num / b) + (num / c)
                - (num / lcm_ab)
                - (num / lcm_bc)
                - (num / lcm_ac)
                + (num / lcm_abc));
    }
 
    // Function for binary search to find the
    // nth term divisible by a, b or c
    static long findNthTerm(int a, int b,
                            int c, long n)
    {
         
        // Set low to (gcd(a, b, c) * n) and high to (max(a, b, c) * n)
        // (gcd(a, b, c) * n) is lowest possible value till index 'n'
        // (max(a, b, c) * n) is highest possible value till index 'n'
        preCal(a, b, c);
        long low = 1, high, mid;
        high = a > b ? (a > c ? a : c) : (b > c ? b : c);
          high = high * n;
        low = gcd(a, gcd_bc) * n;
 
        while (low < high)
        {
            mid = low + (high - low) / 2;
 
            // If the current term is less than
            // n then we need to increase low
            // to mid + 1
            if (divTermCount(a, b, c, mid) < n)
            {
                low = mid + 1;
            }
             
            // If current term is greater than equal to
            // n then high = mid
            else
            {
                high = mid;
            }
        }
        return low;
    }
 
    // Driver code
    public static void Main(String []args)
    {
        int a = 2, b = 3, c = 5, n = 100;
 
        Console.WriteLine(findNthTerm(a, b, c, n));
    }
}
 
// This code is contributed by PrinciRaj1992
// This code was improved by sharad_jain


Javascript




<script>
 
// Javascript program to find nth term
// divisible by a, b or c
 
// Function to return
// gcd of a and b
function gcd( a,  b)
{
    if (a == 0)
        return b;
 
    return gcd(b % a, a);
}
 
var gcd_ab, gcd_bc, gcd_ac, lcm_abc, lcm_ab, lcm_bc, lcm_ac;
 
function preCal(a, b, c) {
    gcd_ab = gcd(a, b); // GCD of a, b
    gcd_bc = gcd(c, b); // GCD of b, c
    gcd_ac = gcd(a, c); // GCD of a, c
    lcm_ab = ((a * b) / gcd_ab); // LCM of a, b
    lcm_bc = ((c * b) / gcd_bc); // LCM of b, c
    lcm_ac = ((a * c) / gcd_ac); // LCM of a, c
    lcm_abc = (lcm_ab * c) / gcd(lcm_ab, c); // LCM of a, b, c
}
 
// Function to return the count of integers
// from the range [1, num] which are
// divisible by either a, b or c
function divTermCount( a,  b,  c,  num)
{
    // Calculate the number of terms divisible by a, b
    // and c then remove the terms which are divisible
    // by both (a, b) or (b, c) or (c, a) and then
    // add the numbers which are divisible by a, b and c
    return parseInt((num / a) + (num / b) + (num / c)
            - (num / lcm_ab)
            - (num / lcm_bc)
            - (num / lcm_ac)
            + (num / lcm_abc));
}
 
// Function for binary search to find the
// nth term divisible by a, b or c
function findNthTerm( a,  b,  c,  n)
{
    // Set low to (gcd(a, b, c) * n) and high to (max(a, b, c) * n)
      // (gcd(a, b, c) * n) is lowest possible value till index 'n'
      // (max(a, b, c) * n) is highest possible value till index 'n'
    preCal(a, b, c);
    var low = 1, high, mid;
    high = a > b ? (a > c ? a : c) : (b > c ? b : c);
    high = high * n;
    low = gcd(a, gcd_bc) * n;
 
    while (low < high) {
        mid = low + (high - low) / 2;
 
        // If the current term is less than
        // n then we need to increase low
        // to mid + 1
        if (divTermCount(a, b, c, mid) < n)
            low = mid + 1;
 
        // If current term is greater than equal to
        // n then high = mid
        else
            high = mid;
    }
 
    return low;
}
 
var a = 2, b = 3, c = 5, n = 100;
document.write(parseInt(findNthTerm(a, b, c, n)));
 
 
// This code is contributed by SoumikMondal
// This code was improved by sharad_jain
 
</script>


Output: 

136

 

Time Complexity: O(logn + log(min(a, b))
Auxiliary Space: O(1)

Another Approach:

  • Initialize three variables a, b, and c to the values of A, B, and C, respectively.
  • Initialize a counter variable count to 0.
  • Initialize a variable num to 0.\
  • While count is less than N, do the following:
    • Find the minimum value among a, b, and c, and assign it to num.
    • If num is equal to a, increment a by A.
    •  If num is equal to b, increment b by B.
    •  If num is equal to c, increment c by C.
    •  Increment the count by 1.
  • Return num.

C++




#include<bits/stdc++.h>
using namespace std;
 
int findNthMultiple(int A, int B, int C, int N){
    int a = A, b = B, c = C, count = 0, num = 0;
    while(count < N){
        num = (a < b) ? (a < c ? a : c) : (b < c ? b : c);
        if(num == a) a += A;
        if(num == b) b += B;
        if(num == c) c += C;
        count++;
    }
    return num;
}
 
int main(){
    int A = 2, B = 3, C = 5, N = 7;
    cout << "The " << N << "th multiple of " << A << ", " << B << " or " << C << " is: " << findNthMultiple(A, B, C, N);
    return 0;
}


C




#include<stdio.h>
 
int findNthMultiple(int A, int B, int C, int N){
    int a = A, b = B, c = C, count = 0, num = 0;
    while(count < N){
        num = (a < b) ? (a < c ? a : c) : (b < c ? b : c);
        if(num == a) a += A;
        if(num == b) b += B;
        if(num == c) c += C;
        count++;
    }
    return num;
}
 
int main(){
    int A = 2, B = 3, C = 5, N = 7;
    printf("The %dth multiple of %d, %d or %d is: %d", N, A, B, C, findNthMultiple(A, B, C, N));
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
    public static int findNthMultiple(int A, int B, int C, int N){
        int a = A, b = B, c = C, count = 0, num = 0;
        while(count < N){
            num = (a < b) ? (a < c ? a : c) : (b < c ? b : c);
            if(num == a) a += A;
            if(num == b) b += B;
            if(num == c) c += C;
            count++;
        }
        return num;
    }
 
    public static void main(String[] args) {
        int A = 2, B = 3, C = 5, N = 7;
        System.out.println("The " + N + "th multiple of " + A + ", " + B + " or " + C + " is: " + findNthMultiple(A, B, C, N));
    }
}


Python3




# Function to find the Nth multiple of A, B, or C
def findNthMultiple(A, B, C, N):
    a = A
    b = B
    c = C
    count = 0
    num = 0
 
    # Loop until we find the Nth multiple
    while count < N:
        # Find the smallest number among a, b, and c
        num = min(a, b, c)
 
        # Increment a, b, or c depending on which one is equal to num
        if num == a:
            a += A
        if num == b:
            b += B
        if num == c:
            c += C
 
        count += 1
 
    return num
 
 
A = 2
B = 3
C = 5
N = 7
 
print(f"The {N}th multiple of {A}, {B}, or {C} is: {findNthMultiple(A, B, C, N)}")


C#




using System;
 
class MainClass {
 
    // Function to find the Nth multiple of A, B or C
    static int FindNthMultiple(int A, int B, int C, int N)
    {
        int a = A, b = B, c = C, count = 0, num = 0;
        while (count < N) {
            num = (a < b) ? (a < c ? a : c)
                          : (b < c ? b : c);
            if (num == a)
                a += A;
            if (num == b)
                b += B;
            if (num == c)
                c += C;
            count++;
        }
        return num;
    }
 
    static void Main()
    {
        int A = 2, B = 3, C = 5, N = 7;
        Console.WriteLine(
            "The {0}th multiple of {1}, {2} or {3} is: {4}",
            N, A, B, C, FindNthMultiple(A, B, C, N));
    }
}
// This code is contributed by user_dtewbxkn77n


Javascript




function findNthMultiple(A, B, C, N) {
    let a = A,
        b = B,
        c = C,
        count = 0,
        num = 0;
    // Loop until the Nth multiple is found
    while (count < N) {
        // Find the minimum of a, b and c
        num = Math.min(a, b, c);
        // Increment a, b or c by A, B or C respectively if it is equal to the minimum
        if (num == a) a += A;
        if (num == b) b += B;
        if (num == c) c += C;
        // Increment the count
        count++;
    }
    // Return the Nth multiple
    return num;
}
 
let A = 2,
    B = 3,
    C = 5,
    N = 7;
console.log("The " + N + "th multiple of " + A + ", " + B + " or " + C + " is: " + findNthMultiple(A, B, C, N));


Output

The 7th multiple of 2, 3 or 5 is: 9

Time complexity: The time complexity of this algorithm is O(N), because we have to iterate through the loop N times.
Auxiliary Space: The space complexity of this algorithm is O(1), because we are not using any additional data structures to store the variables.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments