Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AINodes with prime degree in an undirected Graph

Nodes with prime degree in an undirected Graph

Given an undirected graph with N vertices and M edges, the task is to print all the nodes of the given graph whose degree is a Prime Number.
Examples: 

Input: N = 4, arr[][] = { { 1, 2 }, { 1, 3 }, { 1, 4 }, { 2, 3 }, { 2, 4 }, { 3, 4 } } 
Output: 1 2 3 4 
Explanation: 
Below is the graph for the above information: 
 

The degree of the node as per above graph is: 
Node -> Degree 
1 -> 3 
2 -> 3 
3 -> 3 
4 -> 3 
Hence, the nodes with prime degree are 1 2 3 4
Input: N = 5, arr[][] = { { 1, 2 }, { 1, 3 }, { 2, 4 }, { 2, 5 } } 
Output: 1

Approach: 

  1. Use Sieve of Eratosthenes to calculate the prime numbers up to 105.
  2. For each vertex, the degree can be calculated by the length of the Adjacency List of the given graph at the corresponding vertex.
  3. Print those vertices of the given graph whose degree is a Prime Number.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
int n = 10005;
 
// To store Prime Numbers
vector<bool> Prime(n + 1, true);
 
// Function to find the prime numbers
// till 10^5
void SieveOfEratosthenes()
{
 
    int i, j;
    Prime[0] = Prime[1] = false;
    for (i = 2; i * i <= 10005; i++) {
 
        // Traverse all multiple of i
        // and make it false
        if (Prime[i]) {
 
            for (j = 2 * i; j < 10005; j += i) {
                Prime[j] = false;
            }
        }
    }
}
 
// Function to print the nodes having
// prime degree
void primeDegreeNodes(int N, int M,
                      int edges[][2])
{
    // To store Adjacency List of
    // a Graph
    vector<int> Adj[N + 1];
 
    // Make Adjacency List
    for (int i = 0; i < M; i++) {
        int x = edges[i][0];
        int y = edges[i][1];
 
        Adj[x].push_back(y);
        Adj[y].push_back(x);
    }
 
    // To precompute prime numbers
    // till 10^5
    SieveOfEratosthenes();
 
    // Traverse each vertex
    for (int i = 1; i <= N; i++) {
 
        // Find size of Adjacency List
        int x = Adj[i].size();
 
        // If length of Adj[i] is Prime
        // then print it
        if (Prime[x])
            cout << i << ' ';
    }
}
 
// Driver code
int main()
{
    // Vertices and Edges
    int N = 4, M = 6;
 
    // Edges
    int edges[M][2] = { { 1, 2 }, { 1, 3 },
                        { 1, 4 }, { 2, 3 },
                        { 2, 4 }, { 3, 4 } };
 
    // Function Call
    primeDegreeNodes(N, M, edges);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
class GFG{
 
static int n = 10005;
 
// To store Prime Numbers
static boolean []Prime = new boolean[n + 1];
 
// Function to find the prime numbers
// till 10^5
static void SieveOfEratosthenes()
{
    int i, j;
    Prime[0] = Prime[1] = false;
    for (i = 2; i * i <= 10005; i++)
    {
 
        // Traverse all multiple of i
        // and make it false
        if (Prime[i])
        {
            for (j = 2 * i; j < 10005; j += i)
            {
                Prime[j] = false;
            }
        }
    }
}
 
// Function to print the nodes having
// prime degree
static void primeDegreeNodes(int N, int M,
                              int edges[][])
{
    // To store Adjacency List of
    // a Graph
    Vector<Integer> []Adj = new Vector[N + 1];
    for(int i = 0; i < Adj.length; i++)
        Adj[i] = new Vector<Integer>();
 
    // Make Adjacency List
    for (int i = 0; i < M; i++)
    {
        int x = edges[i][0];
        int y = edges[i][1];
 
        Adj[x].add(y);
        Adj[y].add(x);
    }
 
    // To precompute prime numbers
    // till 10^5
    SieveOfEratosthenes();
 
    // Traverse each vertex
    for (int i = 1; i <= N; i++)
    {
 
        // Find size of Adjacency List
        int x = Adj[i].size();
 
        // If length of Adj[i] is Prime
        // then print it
        if (Prime[x])
            System.out.print(i + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    // Vertices and Edges
    int N = 4, M = 6;
 
    // Edges
    int edges[][] = { { 1, 2 }, { 1, 3 },
                      { 1, 4 }, { 2, 3 },
                      { 2, 4 }, { 3, 4 } };
    Arrays.fill(Prime, true);
     
    // Function Call
    primeDegreeNodes(N, M, edges);
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 implementation of
# the above approach
n = 10005;
  
# To store Prime Numbers
Prime = [True for i in range(n + 1)]
  
# Function to find
# the prime numbers
# till 10^5
def SieveOfEratosthenes():
  
    i = 2   
    Prime[0] = Prime[1] = False;
     
    while i * i <= 10005:
  
        # Traverse all multiple
        # of i and make it false
        if (Prime[i]):           
            for j in range(2 * i, 10005):
                Prime[j] = False       
        i += 1  
     
# Function to print the
# nodes having prime degree
def primeDegreeNodes(N, M, edges):
 
    # To store Adjacency
    # List of a Graph
    Adj = [[] for i in range(N + 1)];
  
    # Make Adjacency List
    for i in range(M):
        x = edges[i][0];
        y = edges[i][1];
  
        Adj[x].append(y);
        Adj[y].append(x);   
  
    # To precompute prime
    # numbers till 10^5
    SieveOfEratosthenes();
  
    # Traverse each vertex
    for i in range(N + 1):
  
        # Find size of Adjacency List
        x = len(Adj[i]);
  
        # If length of Adj[i] is Prime
        # then print it
        if (Prime[x]):
            print(i, end = ' ')          
 
# Driver code
if __name__ == "__main__":
     
    # Vertices and Edges
    N = 4
    M = 6
  
    # Edges
    edges = [[1, 2], [1, 3],
             [1, 4], [2, 3],
             [2, 4], [3, 4]];
  
    # Function Call
    primeDegreeNodes(N, M, edges);
 
# This code is contributed by rutvik_56


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG{
 
static int n = 10005;
 
// To store Prime Numbers
static bool []Prime = new bool[n + 1];
 
// Function to find the prime numbers
// till 10^5
static void SieveOfEratosthenes()
{
    int i, j;
    Prime[0] = Prime[1] = false;
    for(i = 2; i * i <= 10005; i++)
    {
        
       // Traverse all multiple of i
       // and make it false
       if (Prime[i])
       {
           for(j = 2 * i; j < 10005; j += i)
           {
              Prime[j] = false;
           }
       }
    }
}
 
// Function to print the nodes having
// prime degree
static void primeDegreeNodes(int N, int M,
                             int [,]edges)
{
     
    // To store Adjacency List of
    // a Graph
    List<int> []Adj = new List<int>[N + 1];
    for(int i = 0; i < Adj.Length; i++)
       Adj[i] = new List<int>();
 
    // Make Adjacency List
    for(int i = 0; i < M; i++)
    {
       int x = edges[i, 0];
       int y = edges[i, 1];
        
       Adj[x].Add(y);
       Adj[y].Add(x);
    }
     
    // To precompute prime numbers
    // till 10^5
    SieveOfEratosthenes();
 
    // Traverse each vertex
    for(int i = 1; i <= N; i++)
    {
         
       // Find size of Adjacency List
       int x = Adj[i].Count;
        
       // If length of Adj[i] is Prime
       // then print it
       if (Prime[x])
           Console.Write(i + " ");
    }
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Vertices and Edges
    int N = 4, M = 6;
 
    // Edges
    int [,]edges = { { 1, 2 }, { 1, 3 },
                     { 1, 4 }, { 2, 3 },
                     { 2, 4 }, { 3, 4 } };
                      
    for(int i = 0; i < Prime.Length; i++)
       Prime[i] = true;
     
    // Function Call
    primeDegreeNodes(N, M, edges);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of the approach
 
let n = 10005;
 
// To store Prime Numbers
let Prime = new Array(n + 1).fill(true);
 
// Function to find the prime numbers
// till 10^5
function SieveOfEratosthenes()
{
 
    let i, j;
    Prime[0] = Prime[1] = false;
    for (i = 2; i * i <= 10005; i++) {
 
        // Traverse all multiple of i
        // and make it false
        if (Prime[i]) {
 
            for (j = 2 * i; j < 10005; j += i) {
                Prime[j] = false;
            }
        }
    }
}
 
// Function to print the nodes having
// prime degree
function primeDegreeNodes(N, M, edges)
{
    // To store Adjacency List of
    // a Graph
    let Adj = new Array();
 
    for(let i = 0; i < N + 1; i++){
        Adj.push(new Array())
    }
 
    // Make Adjacency List
    for (let i = 0; i < M; i++) {
        let x = edges[i][0];
        let y = edges[i][1];
 
        Adj[x].push(y);
        Adj[y].push(x);
    }
 
    // To precompute prime numbers
    // till 10^5
    SieveOfEratosthenes();
 
    // Traverse each vertex
    for (let i = 1; i <= N; i++) {
 
        // Find size of Adjacency List
        let x = Adj[i].length;
 
        // If length of Adj[i] is Prime
        // then print it
        if (Prime[x])
            document.write(i + ' ');
    }
}
 
// Driver code
 
// Vertices and Edges
let N = 4, M = 6;
 
    // Edges
let edges = [ [ 1, 2 ], [ 1, 3 ],
                [ 1, 4 ], [ 2, 3 ],
                [ 2, 4 ], [ 3, 4 ] ];
 
// Function Call
primeDegreeNodes(N, M, edges);
 
// This code is contributed by gfgking
</script>


Output: 

1 2 3 4

 

Time Complexity: O(N + M), where N is the number of vertices and M is the number of edges.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments