Given two Binary search trees and an integer X, the task is to find a pair of nodes, one belonging to the first BST and the second belonging to other such that their sum is equal to X. If there exists such a pair, print Yes else print No.
Examples:
Input: X = 100 BST 1: 5 / \ 3 7 / \ / \ 2 4 6 8 BST 2: 11 \ 13 Output: No There is no such pair with given value. Input: X = 16 BST 1: 5 / \ 3 7 / \ / \ 2 4 6 8 BST 2: 11 \ 13 Output: Yes 5 + 11 = 16
Approach: We will solve this problem using two pointer approach.
We will create a forward iterator on the first BST and backward on the second. Thus, we will maintain forward and a backward iterator that will iterate the BSTs in the order of in-order and reverse in-order traversal respectively.
- Create a forward and backward iterator for first and second BST respectively. Let’s say the value of nodes they are pointing at are v1 and v2.
- Now at each step,
- If v1 + v2 = X, we found a pair.
- If v1 + v2 less than or equal to x, we will make forward iterator point to the next element.
- If v1 + v2 greater than x, we will make backward iterator point to the previous element.
- We will continue the above while both iterators are pointing to a valid node.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Node of the binary tree struct node { int data; node* left; node* right; node( int data) { this ->data = data; left = NULL; right = NULL; } }; // Function that returns true if a pair // with given sum exists in the given BSTs bool existsPair(node* root1, node* root2, int x) { // Stack to store nodes for forward and backward // iterator stack<node *> it1, it2; // Initializing forward iterator node* c = root1; while (c != NULL) it1.push(c), c = c->left; // Initializing backward iterator c = root2; while (c != NULL) it2.push(c), c = c->right; // Two pointer technique while (it1.size() and it2.size()) { // To store the value of the nodes // current iterators are pointing to int v1 = it1.top()->data, v2 = it2.top()->data; // If found a valid pair if (v1 + v2 == x) return true ; // Moving forward iterator if (v1 + v2 < x) { c = it1.top()->right; it1.pop(); while (c != NULL) it1.push(c), c = c->left; } // Moving backward iterator else { c = it2.top()->left; it2.pop(); while (c != NULL) it2.push(c), c = c->right; } } // If no such pair found return false ; } // Driver code int main() { // First BST node* root1 = new node(11); root1->right = new node(15); // Second BST node* root2 = new node(5); root2->left = new node(3); root2->right = new node(7); root2->left->left = new node(2); root2->left->right = new node(4); root2->right->left = new node(6); root2->right->right = new node(8); int x = 23; if (existsPair(root1, root2, x)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Node of the binary tree static class node { int data; node left; node right; node( int data) { this .data = data; left = null ; right = null ; } }; // Function that returns true if a pair // with given sum exists in the given BSTs static boolean existsPair(node root1, node root2, int x) { // Stack to store nodes for forward and backward // iterator Stack<node> it1 = new Stack(), it2 = new Stack(); // Initializing forward iterator node c = root1; while (c != null ) { it1.push(c); c = c.left; } // Initializing backward iterator c = root2; while (c != null ) { it2.push(c); c = c.right; } // Two pointer technique while (it1.size() > 0 && it2.size() > 0 ) { // To store the value of the nodes // current iterators are pointing to int v1 = it1.peek().data, v2 = it2.peek().data; // If found a valid pair if (v1 + v2 == x) return true ; // Moving forward iterator if (v1 + v2 < x) { c = it1.peek().right; it1.pop(); while (c != null ) { it1.push(c); c = c.left; } } // Moving backward iterator else { c = it2.peek().left; it2.pop(); while (c != null ) { it2.push(c); c = c.right; } } } // If no such pair found return false ; } // Driver code public static void main(String[] args) { // First BST node root1 = new node( 11 ); root1.right = new node( 15 ); // Second BST node root2 = new node( 5 ); root2.left = new node( 3 ); root2.right = new node( 7 ); root2.left.left = new node( 2 ); root2.left.right = new node( 4 ); root2.right.left = new node( 6 ); root2.right.right = new node( 8 ); int x = 23 ; if (existsPair(root1, root2, x)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Princi Singh |
Python3
# Python3 implementation of the approach # Node of the binary tree class node: def __init__ ( self , key): self .data = key self .left = None self .right = None # Function that returns true if a pair # with given sum exists in the given BSTs def existsPair(root1, root2, x): # Stack to store nodes for forward # and backward iterator it1, it2 = [], [] # Initializing forward iterator c = root1 while (c ! = None ): it1.append(c) c = c.left # Initializing backward iterator c = root2 while (c ! = None ): it2.append(c) c = c.right # Two pointer technique while ( len (it1) > 0 and len (it2) > 0 ): # To store the value of the nodes # current iterators are pointing to v1 = it1[ - 1 ].data v2 = it2[ - 1 ].data # If found a valid pair if (v1 + v2 = = x): return True # Moving forward iterator if (v1 + v2 < x): c = it1[ - 1 ].right del it1[ - 1 ] while (c ! = None ): it1.append(c) c = c.left # Moving backward iterator else : c = it2[ - 1 ].left del it2[ - 1 ] while (c ! = None ): it2.append(c) c = c.right # If no such pair found return False # Driver code if __name__ = = '__main__' : # First BST root1 = node( 11 ) root1.right = node( 15 ) # Second BST root2 = node( 5 ) root2.left = node( 3 ) root2.right = node( 7 ) root2.left.left = node( 2 ) root2.left.right = node( 4 ) root2.right.left = node( 6 ) root2.right.right = node( 8 ) x = 23 if (existsPair(root1, root2, x)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Node of the binary tree public class node { public int data; public node left; public node right; public node( int data) { this .data = data; left = null ; right = null ; } }; // Function that returns true if a pair // with given sum exists in the given BSTs static bool existsPair(node root1, node root2, int x) { // Stack to store nodes for forward and backward // iterator Stack<node> it1 = new Stack<node>(), it2 = new Stack<node>(); // Initializing forward iterator node c = root1; while (c != null ) { it1.Push(c); c = c.left; } // Initializing backward iterator c = root2; while (c != null ) { it2.Push(c); c = c.right; } // Two pointer technique while (it1.Count > 0 && it2.Count > 0) { // To store the value of the nodes // current iterators are pointing to int v1 = it1.Peek().data, v2 = it2.Peek().data; // If found a valid pair if (v1 + v2 == x) return true ; // Moving forward iterator if (v1 + v2 < x) { c = it1.Peek().right; it1.Pop(); while (c != null ) { it1.Push(c); c = c.left; } } // Moving backward iterator else { c = it2.Peek().left; it2.Pop(); while (c != null ) { it2.Push(c); c = c.right; } } } // If no such pair found return false ; } // Driver code public static void Main(String[] args) { // First BST node root1 = new node(11); root1.right = new node(15); // Second BST node root2 = new node(5); root2.left = new node(3); root2.right = new node(7); root2.left.left = new node(2); root2.left.right = new node(4); root2.right.left = new node(6); root2.right.right = new node(8); int x = 23; if (existsPair(root1, root2, x)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation of the approach // Node of the binary tree class node { constructor(data) { this .data = data; this .left = null ; this .right = null ; } } // Function that returns true if a pair // with given sum exists in the given BSTs function existsPair(root1,root2,x) { // Stack to store nodes for forward and backward // iterator let it1 =[], it2 = []; // Initializing forward iterator let c = root1; while (c != null ) { it1.push(c); c = c.left; } // Initializing backward iterator c = root2; while (c != null ) { it2.push(c); c = c.right; } // Two pointer technique while (it1.length > 0 && it2.length > 0) { // To store the value of the nodes // current iterators are pointing to let v1 = it1[it1.length-1].data, v2 = it2[it2.length-1].data; // If found a valid pair if (v1 + v2 == x) return true ; // Moving forward iterator if (v1 + v2 < x) { c = it1[it1.length-1].right; it1.pop(); while (c != null ) { it1.push(c); c = c.left; } } // Moving backward iterator else { c = it2[it2.length-1].left; it2.pop(); while (c != null ) { it2.push(c); c = c.right; } } } // If no such pair found return false ; } // Driver code // First BST let root1 = new node(11); root1.right = new node(15); // Second BST let root2 = new node(5); root2.left = new node(3); root2.right = new node(7); root2.left.left = new node(2); root2.left.right = new node(4); root2.right.left = new node(6); root2.right.right = new node(8); let x = 23; if (existsPair(root1, root2, x)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by patel2127 </script> |
Yes
Time complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!