Sunday, January 12, 2025
Google search engine
HomeData Modelling & AINesbitt’s Inequality

Nesbitt’s Inequality

Nesbitt’s inequality is one of the simplest inequalities in mathematics. According to the statement of the inequality, for any 3 given real numbers, they satisfy the mathematical condition, 
{a / (b + c)} + {b / (a + c)} + {c / (a + b)} >= 1.5    for all a>0, b>0, c>0.

Illustrative Examples: 

The 3 numbers satisfying Nesbitts inequality are real numbers.
For a = 1, b = 2, c = 3, 
the condition of the inequality 
{1 / (2 + 3)} + {2 / (1 + 3)} + {3 / (1 + 2)} >= 1.5 holds true.

For a = 1.5, b = 5.6, c = 4.9, 
the condition of the inequality 
{1.5 / (5.6 + 4.9)} + {5.6 / (1.5 + 4.9)} + {4.9 / (1.5 + 5.6)} >= 1.5 holds true.

For a = 4, b = 6, c = 7, 
the condition of the inequality 
{4 / (6 + 7)} + {6 / (4 + 7)} + {7 / (4 + 6)} >= 1.5 holds true.

For a = 459, b = 62, c = 783, 
the condition of the inequality 
{459 / (62 + 783)} + {62 / (459 + 783)} + {783 / (459 + 62)} >= 1.5 holds true.

For a = 9, b = 6, c = 83, 
the condition of the inequality 
{9 / (6 + 83)} + {6 / (9 + 83)} + {83 / (9 + 6)} >= 1.5 holds true. 
  

C++




// C++ code to verify Nesbitt's Inequality
#include <bits/stdc++.h>
using namespace std;
 
bool isValidNesbitt(double a, double b, double c)
{
    // 3 parts of the inequality sum
    double A = a / (b + c);
    double B = b / (a + c);
    double C = c / (a + b);
    double inequality = A + B + C;
 
   return (inequality >= 1.5);
}
 
int main()
{
    double a = 1.0, b = 2.0, c = 3.0;
    if (isValidNesbitt(a, b, c))
        cout << "Nesbitt's inequality satisfied."
             << "for real numbers " << a << ", "
             << b << ", " << c << "\n";
    else
       cout << "Not satisfied";
    return 0;
}


Java




// Java code to verify Nesbitt's Inequality
class GFG {
     
    static boolean isValidNesbitt(double a,
                          double b, double c)
    {
         
        // 3 parts of the inequality sum
        double A = a / (b + c);
        double B = b / (a + c);
        double C = c / (a + b);
        double inequality = A + B + C;
 
        return (inequality >= 1.5);
    }
 
    // Driver code
    public static void main(String args[])
    {
        double a = 1.0, b = 2.0, c = 3.0;
        if(isValidNesbitt(a, b, c) == true)
        {
            System.out.print("Nesbitt's inequality"
                                  + " satisfied.");
            System.out.println("for real numbers "
                         + a + ", " + b + ", " + c);
        }
        else
            System.out.println("Nesbitts inequality"
                                + " not satisfied");
    }
}
 
// This code is contributed by JaideepPyne.


Python3




# Python3 code to verify
# Nesbitt's Inequality
 
def isValidNesbitt(a, b, c):
     
    # 3 parts of the
    # inequality sum
    A = a / (b + c);
    B = b / (a + c);
    C = c / (a + b);
    inequality = A + B + C;
 
    return (inequality >= 1.5);
 
# Driver Code
a = 1.0;
b = 2.0;
c = 3.0;
if (isValidNesbitt(a, b, c)):
    print("Nesbitt's inequality satisfied." ,
          " for real numbers ",a,", ",b,", ",c);
else:
    print("Not satisfied");
 
# This code is contributed by mits


C#




// C# code to verify
// Nesbitt's Inequality
using System;
 
class GFG
{
    static bool isValidNesbitt(double a,
                               double b,
                               double c)
    {
         
        // 3 parts of the
        // inequality sum
        double A = a / (b + c);
        double B = b / (a + c);
        double C = c / (a + b);
        double inequality = A + B + C;
 
        return (inequality >= 1.5);
    }
 
    // Driver code
    static public void Main ()
    {
    double a = 1.0, b = 2.0, c = 3.0;
    if(isValidNesbitt(a, b, c) == true)
    {
        Console.Write("Nesbitt's inequality" +
                               " satisfied ");
        Console.WriteLine("for real numbers " +
                      a + ", " + b + ", " + c);
    }
    else
        Console.WriteLine("Nesbitts inequality" +
                               " not satisfied");
    }
}
 
// This code is contributed by ajit


PHP




<?php
// PHP code to verify
// Nesbitt's Inequality
 
function isValidNesbitt($a, $b, $c)
{
     
    // 3 parts of the
    // inequality sum
    $A = $a / ($b + $c);
    $B = $b / ($a + $c);
    $C = $c / ($a + $b);
    $inequality = $A + $B + $C;
 
    return ($inequality >= 1.5);
}
 
    // Driver Code
    $a = 1.0;
    $b = 2.0;
    $c = 3.0;
    if (isValidNesbitt($a, $b, $c))
        echo"Nesbitt's inequality satisfied.",
            "for real numbers ", $a, ", ", $b,
                               ", ", $c, "\n";
    else
    cout <<"Not satisfied";
 
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// Javascript code to verify Nesbitt's Inequality
function isValidNesbitt(a, b, c)
{
     
    // 3 parts of the
    // inequality sum
    let A = a / (b + c);
    let B = b / (a + c);
    let C = c / (a + b);
    let inequality = A + B + C;
 
    return (inequality >= 1.5);
}
 
// Driver code
let a = 1.0, b = 2.0, c = 3.0;
if (isValidNesbitt(a, b, c) == true)
{
    document.write("Nesbitt's inequality" +
                   " satisfied.");
    document.write("for real numbers " +
                   a + ", " + b + ", " + c);
}
else
    document.write("Nesbitts inequality" +
                   " not satisfied");
                    
// This code is contributed by decode2207
 
</script>


Output : 

Nesbitt's inequality satisfied.for real numbers 1, 2, 3

 

Time complexity : O(1) 
Auxiliary Space : O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments