Given non-negative integers K, M, and an array arr[ ] consisting of N elements, the task is to find the Mth element of the array after K right rotations.
Examples:
Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1
Output: 5
Explanation:
The array after first right rotation a1[ ] = {23, 3, 4, 5}
The array after second right rotation a2[ ] = {5, 23, 3, 4}
1st element after 2 right rotations is 5.
Input: arr[] = {1, 2, 3, 4, 5}, K = 3, M = 2
Output: 4
Explanation:
The array after 3 right rotations has 4 at its second position.
Naive Approach:
The simplest approach to solve the problem is to Perform Right Rotation operation K times and then find the Mth element of the final array.
Algorithm:
- Define a function called leftrotate that takes a vector and an integer d as input. The function should reverse the elements of the vector from the beginning up to index d, then from index d to the end, and finally the entire vector.
- Define a function called rightrotate that takes a vector and an integer d as input. The function should call leftrotate with the vector and the difference between the size of the vector and d as arguments.
- Define a function called getFirstElement that takes an integer array a, its size N, and two integers K and M as input. The function should do the following:
- Initialize a vector v with the elements of array a.
- Right rotate the vector v K times by calling rightrotate in a loop with v and the integer value 1 as arguments, K times.
- Return the Mth element of the rotated vector v.
- In the main function, initialize an integer array a and its size N, and two integers K and M with appropriate values.
- Call the function getFirstElement with an array a, N, K, and M as arguments and print the returned value.
Below is the implementation of the approach:
C++
// C++ program to find the Mth element // of the array after K right rotations. #include <bits/stdc++.h> using namespace std; // In-place rotates s towards left by d void leftrotate(vector< int >& v, int d) { reverse(v.begin(), v.begin() + d); reverse(v.begin() + d, v.end()); reverse(v.begin(), v.end()); } // In-place rotates s towards right by d void rightrotate(vector< int >& v, int d) { leftrotate(v, v.size() - d); } // Function to return Mth element of // array after k right rotations int getFirstElement( int a[], int N, int K, int M) { vector< int > v; for ( int i = 0; i < N; i++) v.push_back(a[i]); // Right rotate K times while (K--) { rightrotate(v, 1); } // return Mth element return v[M - 1]; } // Driver code int main() { // Array initialization int a[] = { 1, 2, 3, 4, 5 }; int N = sizeof (a) / sizeof (a[0]); int K = 3, M = 2; // Function call cout << getFirstElement(a, N, K, M); return 0; } |
Java
import java.util.Arrays; public class GFG { // In-place rotates array towards left by d static void leftRotate( int [] arr, int d) { int n = arr.length; reverse(arr, 0 , d - 1 ); reverse(arr, d, n - 1 ); reverse(arr, 0 , n - 1 ); } // In-place rotates array towards right by d static void rightRotate( int [] arr, int d) { int n = arr.length; leftRotate(arr, n - d); } // Helper function to reverse a subarray static void reverse( int [] arr, int start, int end) { while (start < end) { int temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; start++; end--; } } // Function to return Mth element of array after K right rotations static int getFirstElement( int [] arr, int K, int M) { int [] rotatedArray = Arrays.copyOf(arr, arr.length); // Right rotate K times for ( int i = 0 ; i < K; i++) { rightRotate(rotatedArray, 1 ); } // Return Mth element return rotatedArray[M - 1 ]; } public static void main(String[] args) { // Array initialization int [] arr = { 1 , 2 , 3 , 4 , 5 }; int K = 3 ; int M = 2 ; // Function call System.out.println(getFirstElement(arr, K, M)); } } |
Python3
def left_rotate(v, d): v[:d] = v[:d][:: - 1 ] v[d:] = v[d:][:: - 1 ] v[:] = v[:: - 1 ] def right_rotate(v, d): left_rotate(v, len (v) - d) def get_first_element(a, K, M): v = list (a) # Right rotate K times while K > 0 : right_rotate(v, 1 ) K - = 1 # Return Mth element return v[M - 1 ] # Driver code a = [ 1 , 2 , 3 , 4 , 5 ] K = 3 M = 2 # Function call print (get_first_element(a, K, M)) # This code is contributed by Dwaipayan Bandyopadhyay |
C#
// C# program to find the Mth element // of the array after K right rotations. using System; using System.Linq; class GFG { // In-place rotates array towards left by d static void leftrotate( ref int [] v, int d) { Array.Reverse(v, 0, d); Array.Reverse(v, d, v.Length - d); Array.Reverse(v); } // In-place rotates array towards right by d static void reftrotate( ref int [] v, int d) { leftrotate( ref v, v.Length - d); } // Function to return Mth element of // array after K right rotations static int getFirstElement( int [] a, int K, int M) { int [] v = a.ToArray(); // Right rotate K times while (K > 0) { reftrotate( ref v, 1); K--; } // return Mth element return v[M - 1]; } static void Main( string [] args) { // Array initialization int [] a = { 1, 2, 3, 4, 5 }; int N = a.Length; int K = 3, M = 2; // Function call Console.WriteLine(getFirstElement(a, K, M)); } } |
Javascript
// Javascript program to find the Mth element // of the array after K right rotations // In-place rotates s towards left by d function leftrotate(v, d) { const reversedFirstPart = v.slice(0, d).reverse(); const reversedSecondPart = v.slice(d).reverse(); const reversedArray = reversedFirstPart.concat(reversedSecondPart).reverse(); for (let i = 0; i < v.length; i++) { v[i] = reversedArray[i]; } } // In-place rotates s towards right by d function rightrotate(v, d) { leftrotate(v, v.length - d); } // Function to return Mth element of // array after k right rotations function getFirstElement(a, N, K, M) { let v = []; for (let i = 0; i < N; i++) { v.push(a[i]); } // Right rotate K times while (K--) { rightrotate(v, 1); } // return Mth element return v[M - 1]; } // Driver code // Array initialization let a = [1, 2, 3, 4, 5]; let N = a.length; let K = 3; let M = 2; // Function call console.log(getFirstElement(a, N, K, M)); |
4
Time Complexity: O(N * K)
Auxiliary Space: O(N)
Efficient Approach:
To optimize the problem, the following observations need to be made:
- If the array is rotated N times it returns the initial array again.
For example, a[ ] = {1, 2, 3, 4, 5}, K=5
Modified array after 5 right rotation a5[ ] = {1, 2, 3, 4, 5}.
- Therefore, the elements in the array after Kth rotation is the same as the element at index K%N in the original array.
- If K >= M, the Mth element of the array after K right rotations is
{ (N-K) + (M-1) } th element in the original array.
- If K < M, the Mth element of the array after K right rotations is:
(M – K – 1) th element in the original array.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include<bits/stdc++.h> using namespace std; // Function to return Mth element of // array after k right rotations int getFirstElement( int a[], int N, int K, int M) { // The array comes to original state // after N rotations K %= N; int index; // If K is greater or equal to M if (K >= M) // Mth element after k right // rotations is (N-K)+(M-1) th // element of the array index = (N - K) + (M - 1); // Otherwise else // (M - K - 1) th element // of the array index = (M - K - 1); int result = a[index]; // Return the result return result; } // Driver Code int main() { int a[] = { 1, 2, 3, 4, 5 }; int N = sizeof (a) / sizeof (a[0]); int K = 3, M = 2; cout << getFirstElement(a, N, K, M); return 0; } |
Java
// Java program to implement // the above approach class GFG{ // Function to return Mth element of // array after k right rotations static int getFirstElement( int a[], int N, int K, int M) { // The array comes to original state // after N rotations K %= N; int index; // If K is greater or equal to M if (K >= M) // Mth element after k right // rotations is (N-K)+(M-1) th // element of the array index = (N - K) + (M - 1 ); // Otherwise else // (M - K - 1) th element // of the array index = (M - K - 1 ); int result = a[index]; // Return the result return result; } // Driver Code public static void main(String[] args) { int a[] = { 1 , 2 , 3 , 4 , 5 }; int N = 5 ; int K = 3 , M = 2 ; System.out.println(getFirstElement(a, N, K, M)); } } // This code is contributed by Ritik Bansal |
Python3
# Python3 program to implement # the above approach # Function to return Mth element of # array after k right rotations def getFirstElement(a, N, K, M): # The array comes to original state # after N rotations K % = N # If K is greater or equal to M if (K > = M): # Mth element after k right # rotations is (N-K)+(M-1) th # element of the array index = (N - K) + (M - 1 ) # Otherwise else : # (M - K - 1) th element # of the array index = (M - K - 1 ) result = a[index] # Return the result return result # Driver Code if __name__ = = "__main__" : a = [ 1 , 2 , 3 , 4 , 5 ] N = len (a) K , M = 3 , 2 print ( getFirstElement(a, N, K, M)) # This code is contributed by chitranayal |
C#
// C# program to implement // the above approach using System; class GFG{ // Function to return Mth element of // array after k right rotations static int getFirstElement( int []a, int N, int K, int M) { // The array comes to original state // after N rotations K %= N; int index; // If K is greater or equal to M if (K >= M) // Mth element after k right // rotations is (N-K)+(M-1) th // element of the array index = (N - K) + (M - 1); // Otherwise else // (M - K - 1) th element // of the array index = (M - K - 1); int result = a[index]; // Return the result return result; } // Driver Code public static void Main() { int []a = { 1, 2, 3, 4, 5 }; int N = 5; int K = 3, M = 2; Console.Write(getFirstElement(a, N, K, M)); } } // This code is contributed by Code_Mech |
Javascript
<script> // JavaScript program to implement // the approach // Function to return Mth element of // array after k right rotations function getFirstElement(a, N, K, M) { // The array comes to original state // after N rotations K %= N; let index; // If K is greater or equal to M if (K >= M) // Mth element after k right // rotations is (N-K)+(M-1) th // element of the array index = (N - K) + (M - 1); // Otherwise else // (M - K - 1) th element // of the array index = (M - K - 1); let result = a[index]; // Return the result return result; } // Driver Code let a = [ 1, 2, 3, 4, 5 ]; let N = 5; let K = 3, M = 2; document.write(getFirstElement(a, N, K, M)); </script> |
4
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!