Friday, November 15, 2024
Google search engine
HomeData Modelling & AIMth element after K Right Rotations of an Array

Mth element after K Right Rotations of an Array

Given non-negative integers K, M, and an array arr[ ] consisting of N elements, the task is to find the Mth element of the array after K right rotations.

Examples: 

Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1 
Output:
Explanation: 
The array after first right rotation a1[ ] = {23, 3, 4, 5} 
The array after second right rotation a2[ ] = {5, 23, 3, 4} 
1st element after 2 right rotations is 5.
Input: arr[] = {1, 2, 3, 4, 5}, K = 3, M = 2 
Output:
Explanation: 
The array after 3 right rotations has 4 at its second position. 

Naive Approach: 
The simplest approach to solve the problem is to Perform Right Rotation operation K times and then find the Mth element of the final array. 

Algorithm:

  1. Define a function called leftrotate that takes a vector and an integer d as input. The function should reverse the elements of the vector from the beginning up to index d, then from index d to the end, and finally the entire vector.
  2. Define a function called rightrotate that takes a vector and an integer d as input. The function should call leftrotate with the vector and the difference between the size of the vector and d as arguments.
  3. Define a function called getFirstElement that takes an integer array a, its size N, and two integers K and M as input. The function should do the following:
    1. Initialize a vector v with the elements of array a.
    2. Right rotate the vector v K times by calling rightrotate in a loop with v and the integer value 1 as arguments, K times.
    3. Return the Mth element of the rotated vector v.
  4. In the main function, initialize an integer array a and its size N, and two integers K and M with appropriate values.
  5.  Call the function getFirstElement with an array a, N, K, and M as arguments and print the returned value.

Below is the implementation of the approach:

C++




// C++ program to find the Mth element
// of the array after K right rotations.
 
#include <bits/stdc++.h>
using namespace std;
 
// In-place rotates s towards left by d
void leftrotate(vector<int>& v, int d)
{
    reverse(v.begin(), v.begin() + d);
    reverse(v.begin() + d, v.end());
    reverse(v.begin(), v.end());
}
 
// In-place rotates s towards right by d
void rightrotate(vector<int>& v, int d)
{
    leftrotate(v, v.size() - d);
}
 
// Function to return Mth element of
// array after k right rotations
int getFirstElement(int a[], int N, int K, int M)
{
    vector<int> v;
 
    for (int i = 0; i < N; i++)
        v.push_back(a[i]);
 
    // Right rotate K times
    while (K--) {
        rightrotate(v, 1);
    }
 
    // return Mth element
    return v[M - 1];
}
 
// Driver code
int main()
{
    // Array initialization
    int a[] = { 1, 2, 3, 4, 5 };
    int N = sizeof(a) / sizeof(a[0]);
    int K = 3, M = 2;
 
    // Function call
    cout << getFirstElement(a, N, K, M);
 
    return 0;
}


Java




import java.util.Arrays;
 
public class GFG {
    // In-place rotates array towards left by d
    static void leftRotate(int[] arr, int d) {
        int n = arr.length;
        reverse(arr, 0, d - 1);
        reverse(arr, d, n - 1);
        reverse(arr, 0, n - 1);
    }
 
    // In-place rotates array towards right by d
    static void rightRotate(int[] arr, int d) {
        int n = arr.length;
        leftRotate(arr, n - d);
    }
 
    // Helper function to reverse a subarray
    static void reverse(int[] arr, int start, int end) {
        while (start < end) {
            int temp = arr[start];
            arr[start] = arr[end];
            arr[end] = temp;
            start++;
            end--;
        }
    }
 
    // Function to return Mth element of array after K right rotations
    static int getFirstElement(int[] arr, int K, int M) {
        int[] rotatedArray = Arrays.copyOf(arr, arr.length);
 
        // Right rotate K times
        for (int i = 0; i < K; i++) {
            rightRotate(rotatedArray, 1);
        }
 
        // Return Mth element
        return rotatedArray[M - 1];
    }
 
    public static void main(String[] args) {
        // Array initialization
        int[] arr = {1, 2, 3, 4, 5};
        int K = 3;
        int M = 2;
 
        // Function call
        System.out.println(getFirstElement(arr, K, M));
    }
}


Python3




def left_rotate(v, d):
    v[:d] = v[:d][::-1]
    v[d:] = v[d:][::-1]
    v[:] = v[::-1]
 
 
def right_rotate(v, d):
    left_rotate(v, len(v) - d)
 
 
def get_first_element(a, K, M):
    v = list(a)
 
    # Right rotate K times
    while K > 0:
        right_rotate(v, 1)
        K -= 1
 
    # Return Mth element
    return v[M - 1]
 
 
# Driver code
a = [1, 2, 3, 4, 5]
K = 3
M = 2
 
# Function call
print(get_first_element(a, K, M))
 
# This code is contributed by Dwaipayan Bandyopadhyay


C#




// C# program to find the Mth element
// of the array after K right rotations.
 
using System;
using System.Linq;
 
class GFG
{
    // In-place rotates array towards left by d
    static void leftrotate(ref int[] v, int d)
    {
        Array.Reverse(v, 0, d);
        Array.Reverse(v, d, v.Length - d);
        Array.Reverse(v);
    }
 
    // In-place rotates array towards right by d
    static void reftrotate(ref int[] v, int d)
    {
        leftrotate(ref v, v.Length - d);
    }
 
    // Function to return Mth element of
    // array after K right rotations
    static int getFirstElement(int[] a, int K, int M)
    {
        int[] v = a.ToArray();
 
        // Right rotate K times
        while (K > 0)
        {
            reftrotate(ref v, 1);
            K--;
        }
 
        // return Mth element
        return v[M - 1];
    }
 
    static void Main(string[] args)
    {
        // Array initialization
        int[] a = { 1, 2, 3, 4, 5 };
        int N = a.Length;
        int K = 3, M = 2;
 
        // Function call
        Console.WriteLine(getFirstElement(a, K, M));
    }
}


Javascript




// Javascript program to find the Mth element
// of the array after K right rotations
 
// In-place rotates s towards left by d
function leftrotate(v, d) {
    const reversedFirstPart = v.slice(0, d).reverse();
    const reversedSecondPart = v.slice(d).reverse();
    const reversedArray = reversedFirstPart.concat(reversedSecondPart).reverse();
    for (let i = 0; i < v.length; i++) {
        v[i] = reversedArray[i];
    }
}
 
// In-place rotates s towards right by d
function rightrotate(v, d) {
    leftrotate(v, v.length - d);
}
 
// Function to return Mth element of
// array after k right rotations
function getFirstElement(a, N, K, M) {
    let v = [];
    for (let i = 0; i < N; i++) {
        v.push(a[i]);
    }
 
    // Right rotate K times
    while (K--) {
        rightrotate(v, 1);
    }
 
    // return Mth element
    return v[M - 1];
}
 
// Driver code
 
// Array initialization
let a = [1, 2, 3, 4, 5];
let N = a.length;
let K = 3;
let M = 2;
 
// Function call
console.log(getFirstElement(a, N, K, M));


Output

4










Time Complexity: O(N * K) 
Auxiliary Space: O(N)
Efficient Approach: 
To optimize the problem, the following observations need to be made: 

  • If the array is rotated N times it returns the initial array again.

 For example, a[ ] = {1, 2, 3, 4, 5}, K=5 
Modified array after 5 right rotation a5[ ] = {1, 2, 3, 4, 5}.  

  • Therefore, the elements in the array after Kth rotation is the same as the element at index K%N in the original array.
  • If K >= M, the Mth element of the array after K right rotations is 
     

 { (N-K) + (M-1) } th element in the original array.  

  • If K < M, the Mth element of the array after K right rotations is: 
     

 (M – K – 1) th  element in the original array.  

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to return Mth element of
// array after k right rotations
int getFirstElement(int a[], int N,
                    int K, int M)
{
    // The array comes to original state
    // after N rotations
    K %= N;
    int index;
 
    // If K is greater or equal to M
    if (K >= M)
 
        // Mth element after k right
        // rotations is (N-K)+(M-1) th
        // element of the array
        index = (N - K) + (M - 1);
 
    // Otherwise
    else
 
        // (M - K - 1) th element
        // of the array
        index = (M - K - 1);
 
    int result = a[index];
 
    // Return the result
    return result;
}
 
// Driver Code
int main()
{
    int a[] = { 1, 2, 3, 4, 5 };
   
    int N = sizeof(a) / sizeof(a[0]);
   
    int K = 3, M = 2;
   
    cout << getFirstElement(a, N, K, M);
   
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
  
// Function to return Mth element of
// array after k right rotations
static int getFirstElement(int a[], int N,
                           int K, int M)
{
    // The array comes to original state
    // after N rotations
    K %= N;
    int index;
  
    // If K is greater or equal to M
    if (K >= M)
  
        // Mth element after k right
        // rotations is (N-K)+(M-1) th
        // element of the array
        index = (N - K) + (M - 1);
  
    // Otherwise
    else
  
        // (M - K - 1) th element
        // of the array
        index = (M - K - 1);
  
    int result = a[index];
  
    // Return the result
    return result;
}
  
// Driver Code
public static void main(String[] args)
{
    int a[] = { 1, 2, 3, 4, 5 };
    
    int N = 5;
    
    int K = 3, M = 2;
    
    System.out.println(getFirstElement(a, N, K, M));
}
}
 
// This code is contributed by Ritik Bansal


Python3




# Python3 program to implement
# the above approach
 
# Function to return Mth element of
# array after k right rotations
def getFirstElement(a, N, K, M):
 
    # The array comes to original state
    # after N rotations
    K %= N
 
    # If K is greater or equal to M
    if (K >= M):
 
        # Mth element after k right
        # rotations is (N-K)+(M-1) th
        # element of the array
        index = (N - K) + (M - 1)
 
    # Otherwise
    else:
 
        # (M - K - 1) th element
        # of the array
        index = (M - K - 1)
 
    result = a[index]
 
    # Return the result
    return result
 
# Driver Code
if __name__ == "__main__":
     
    a = [ 1, 2, 3, 4, 5 ]
    N = len(a)
 
    K , M = 3, 2
 
    print( getFirstElement(a, N, K, M))
 
# This code is contributed by chitranayal


C#




// C# program to implement
// the above approach
using System;
class GFG{
 
// Function to return Mth element of
// array after k right rotations
static int getFirstElement(int []a, int N,
                        int K, int M)
{
    // The array comes to original state
    // after N rotations
    K %= N;
    int index;
 
    // If K is greater or equal to M
    if (K >= M)
 
        // Mth element after k right
        // rotations is (N-K)+(M-1) th
        // element of the array
        index = (N - K) + (M - 1);
 
    // Otherwise
    else
 
        // (M - K - 1) th element
        // of the array
        index = (M - K - 1);
 
    int result = a[index];
 
    // Return the result
    return result;
}
 
// Driver Code
public static void Main()
{
    int []a = { 1, 2, 3, 4, 5 };
     
    int N = 5;
     
    int K = 3, M = 2;
     
    Console.Write(getFirstElement(a, N, K, M));
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
// JavaScript program to implement
// the approach
 
// Function to return Mth element of
// array after k right rotations
function getFirstElement(a, N,
                           K, M)
{
    // The array comes to original state
    // after N rotations
    K %= N;
    let index;
    
    // If K is greater or equal to M
    if (K >= M)
    
        // Mth element after k right
        // rotations is (N-K)+(M-1) th
        // element of the array
        index = (N - K) + (M - 1);
    
    // Otherwise
    else
    
        // (M - K - 1) th element
        // of the array
        index = (M - K - 1);
    
    let result = a[index];
    
    // Return the result
    return result;
}
 
// Driver Code   
     
    let a = [ 1, 2, 3, 4, 5 ];
      
    let N = 5;
      
    let K = 3, M = 2;
      
    document.write(getFirstElement(a, N, K, M));
                               
</script>


Output

4










Time Complexity: O(1) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments