Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIModular Exponentiation (Power in Modular Arithmetic)

Modular Exponentiation (Power in Modular Arithmetic)

Given three numbers x, y and p, compute (xy) % p. 

Examples : 

Input:  x = 2, y = 3, p = 5
Output: 3
Explanation: 2^3 % 5 = 8 % 5 = 3.

Input:  x = 2, y = 5, p = 13
Output: 6
Explanation: 2^5 % 13 = 32 % 13 = 6.

We have discussed recursive and iterative solutions for power.

Below is discussed iterative solution. 

C++14




/* Iterative Function to calculate (x^y)%p in O(log y) */
#include <iostream>
using namespace std;
 
int power(int x, int y, int p)
{
 
    // Initialize answer
    int res = 1;
 
    // Check till the number becomes zero
    while (y > 0) {
 
        // If y is odd, multiply x with result
        if (y % 2 == 1)
            res = (res * x);
 
        // y = y/2
        y = y >> 1;
 
        // Change x to x^2
        x = (x * x);
    }
    return res % p;
}
 
int main()
{
    int x = 2;
    int y = 5;
    int p = 13;
    cout << "Power is " << power(x, y, p);
    return 0;
}
 
// This code is contributed by yaswanth0412


Java




/* Iterative Function to calculate (x^y)%p in O(log y) */
class GFG {
    static int power(int x, int y, int p)
    {
        int res = 1; // Initialize result
 
        while (y > 0) {
 
            // If y is odd, multiply x with result
            if ((y & 1) != 0)
                res = res * x;
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = x * x; // Change x to x^2
        }
        return res % p;
    }
 
    public static void main(String[] args)
    {
        int x = 2;
        int y = 5;
        int p = 13;
 
        int mod = power(x, y, p);
        System.out.print("Power is " + mod);
    }
}
 
// This code is contributed by Dharanendra L V.


Python3




# Iterative Function to calculate (x^y)%p in O(log y)
def power(x, y, p):
 
    # Initialize result
    res = 1
 
    while (y > 0):
 
        # If y is odd, multiply x with result
        if ((y & 1) != 0):
            res = res * x
 
        # y must be even now
        y = y >> 1  # y = y/2
        x = x * # Change x to x^2
 
    return res % p
 
  # Driver Code
 
 
x = 2
y = 5
p = 13
print("Power is ", power(x, y, p))
# This code is contributed by Khushboogoyal499


Javascript




<script>
/* Iterative Function to calculate (x^y) % p in O(log y) */
function power(x, y, p)
{
    let res = 1;     // Initialize result
 
    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = res*x;
 
        // y must be even now
        y = y>>1; // y = y/2
        x = x*x; // Change x to x^2
    }
    return res % p;
}
 
// Driver Code
let x = 2;
let y = 5;
let p = 13;
document.write("Power is " + power(x, y, p));
 
// This code is contributed by _saurabh_jaiswal
</script>


C#




/* Iterative Function to calculate (x^y)%p in O(log y) */
using System;
class GFG {
    static int power(int x, int y, int p)
    {
        int res = 1; // Initialize result
 
        while (y > 0) {
            // If y is odd, multiply x with result
            if ((y & 1) != 0)
                res = res * x;
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = x * x; // Change x to x^2
        }
        return res % p;
    }
 
    // Driver Code
    static public void Main()
    {
        int x = 2;
        int y = 5;
        int p = 13;
        Console.Write("Power is " + power(x, y, p));
    }
}
 
// This code is contributed by Dharanendra L V.


Output

Power is 6

Time Complexity: O(log2y), where y represents the value of the given input.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
 

Efficient Approach:

The problem with the above solutions is, overflow may occur for large values of n or x. Therefore, power is generally evaluated under the modulo of a large number.

Below is the fundamental modular property that is used for efficiently computing power under modular arithmetic. 

(ab) mod p = ( (a mod p) (b mod p) ) mod p 

For example a = 50,  b = 100, p = 13
50  mod 13  = 11
100 mod 13  = 9

(50 * 100) mod 13 = ( (50 mod 13) * (100 mod 13) ) mod 13 
or (5000) mod 13 = ( 11 * 9 ) mod 13
or 8 = 8

Below is the implementation based on the above property.  

C++14




// Iterative C++ program to compute modular power
#include <iostream>
using namespace std;
 
/* Iterative Function to calculate (x^y)%p in O(log y) */
int power(long long x, unsigned int y, int p)
{
    int res = 1;     // Initialize result
 
    x = x % p; // Update x if it is more than or
                // equal to p
  
    if (x == 0) return 0; // In case x is divisible by p;
 
    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res*x) % p;
 
        // y must be even now
        y = y>>1; // y = y/2
        x = (x*x) % p;
    }
    return res;
}
 
// Driver code
int main()
{
    int x = 2;
    int y = 5;
    int p = 13;
    cout << "Power is " << power(x, y, p);
    return 0;
}
 
// This code is contributed by shubhamsingh10


Java




// Iterative Java program to compute modular power
import java.io.*;
class GFG
{
 
  /* Iterative Function to calculate (x^y) in O(log y) */
  static int power(int x, int y, int p)
  {
    int res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or
    // equal to p
 
    if (x == 0)
      return 0; // In case x is divisible by p;
 
    while (y > 0)
    {
 
      // If y is odd, multiply x with result
      if ((y & 1) != 0)
        res = (res * x) % p;
 
      // y must be even now
      y = y >> 1; // y = y/2
      x = (x * x) % p;
    }
    return res;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int x = 2;
    int y = 5;
    int p = 13;
    System.out.print("Power is " + power(x, y, p));
  }
}
 
// This code is contributed by Dharanendra L V.


Python3




# Iterative Python3 program
# to compute modular power
 
# Iterative Function to calculate
# (x^y)%p in O(log y)
def power(x, y, p) :
    res = 1     # Initialize result
 
    # Update x if it is more
    # than or equal to p
    x = x % p
     
    if (x == 0) :
        return 0
 
    while (y > 0) :
         
        # If y is odd, multiply
        # x with result
        if ((y & 1) == 1) :
            res = (res * x) % p
 
        # y must be even now
        y = y >> 1      # y = y/2
        x = (x * x) % p
         
    return res
     
 
# Driver Code
 
x = 2; y = 5; p = 13
print("Power is ", power(x, y, p))
 
 
# This code is contributed by Nikita Tiwari.


C#




using System;
public class GFG
{
 
  /* Iterative Function to calculate (x^y) in O(log y) */
  static int power(int x, int y, int p)
  {
    int res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or
    // equal to p
 
    if (x == 0)
      return 0; // In case x is divisible by p;
 
    while (y > 0)
    {
 
      // If y is odd, multiply x with result
      if ((y & 1) != 0)
        res = (res * x) % p;
 
      // y must be even now
      y = y >> 1; // y = y/2
      x = (x * x) % p;
    }
    return res;
  }
 
  // Driver Code
  static public void Main ()
  {
    int x = 2;
    int y = 5;
    int p = 13;
    Console.Write("Power is " + power(x, y, p));
  }
}
 
// This code is contributed by Dharanendra L V.


PHP




<?php
// Iterative PHP program to
// compute modular power
 
// Iterative Function to
// calculate (x^y)%p in O(log y)
function power($x, $y, $p)
{
    // Initialize result
    $res = 1;
 
    // Update x if it is more
    // than or equal to p
    $x = $x % $p;
 
    if ($x == 0)
        return 0;
 
    while ($y > 0)
    {
        // If y is odd, multiply
        // x with result
        if ($y & 1)
            $res = ($res * $x) % $p;
 
        // y must be even now
         
        // y = $y/2
        $y = $y >> 1;
        $x = ($x * $x) % $p;
    }
    return $res;
}
 
// Driver Code
$x = 2;
$y = 5;
$p = 13;
echo "Power is ", power($x, $y, $p);
 
// This code is contributed by aj_36
?>


Javascript




// Iterative Javascript program to
// compute modular power
 
// Iterative Function to
// calculate (x^y)%p in O(log y)
function power(x, y, p)
{
    // Initialize result
    let res = 1;
 
    // Update x if it is more
    // than or equal to p
    x = x % p;
 
    if (x == 0)
        return 0;
 
    while (y > 0)
    {
        // If y is odd, multiply
        // x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
         
        // y = $y/2
        y = y >> 1;
        x = (x * x) % p;
    }
    return res;
}
 
// Driver Code
let x = 2;
let y = 5;
let p = 13;
document.write("Power is " + power(x, y, p));
 
// This code is contributed by _saurabh_jaiswal


Output

Power is 6

Time Complexity: O(Log y), where y represents the value of the given input.

Auxiliary Space: O(1), as we are not using any extra space.

Modular exponentiation (Recursive)
This article is contributed by Shivam Agrawal. Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments