Sunday, December 29, 2024
Google search engine
HomeData Modelling & AIModular Exponentiation of Complex Numbers

Modular Exponentiation of Complex Numbers

Given four integers A, B, K, M. The task is to find (A + iB)K % M which is a complex number too. A + iB represents a complex number. Examples:

Input : A = 2, B = 3, K = 4, M = 5 Output: 1 + i*0 Input : A = 7, B = 3, K = 10, M = 97 Output: 25 + i*29

Prerequisite: Modular Exponentiation Approach: An efficient approach is similar to the modular exponentiation of a single number. Here, instead of a single we have two number A, B. So, pass a pair of integers as a parameter to the function instead of a single number. Below is the implementation of the above approach : 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to multiply two complex numbers modulo M
pair<int, int> Multiply (pair<int, int> p, pair<int, int> q,
                                                    int M)
{
    // Multiplication of two complex numbers is
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
     
    int x = ((p.first * q.first) % M - (p.second *
                                    q.second) % M + M) % M;
     
    int y = ((p.first * q.second) % M + (p.second *
                                          q.first) % M) %M;
 
    // Return the multiplied value
    return {x, y};
}
 
 
// Function to calculate the complex modular exponentiation
pair<int, int> compPow(pair<int, int> complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair<int, int> res = { 1, 0 };
     
    while (k > 0)
    {
        // If k is odd
        if (k & 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M);
        }
         
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
         
        // Make k as k/2
        k = k >> 1;
    }
     
    //Return the required answer
    return res;
}
 
// Driver code
int main()
{
 
    int A = 7, B = 3, k = 10, M = 97;
     
    // Function call
    pair<int, int> ans = compPow({A, B}, k, M);
     
    cout << ans.first << " + i" << ans.second;   
     
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to multiply two complex numbers modulo M
static pair Multiply (pair p, pair q, int M)
{
    // Multiplication of two complex numbers is
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
     
    int x = ((p.first * q.first) % M -
             (p.second * q.second) % M + M) % M;
     
    int y = ((p.first * q.second) % M +
             (p.second * q.first) % M) % M;
 
    // Return the multiplied value
    return new pair(x, y);
}
 
 
// Function to calculate the
// complex modular exponentiation
static pair compPow(pair complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair res = new pair(1, 0 );
     
    while (k > 0)
    {
        // If k is odd
        if (k % 2 == 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M);
        }
         
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
         
        // Make k as k/2
        k = k >> 1;
    }
     
    // Return the required answer
    return res;
}
 
// Driver code
public static void main(String[] args)
{
    int A = 7, B = 3, k = 10, M = 97;
     
    // Function call
    pair ans = compPow(new pair(A, B), k, M);
     
    System.out.println(ans.first + " + i" +
                       ans.second);
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Function to multiply two complex numbers modulo M
def Multiply (p, q, M):
     
    # Multiplication of two complex numbers is
    # (a + ib)(c + id) = (ac - bd) + i(ad + bc)
    x = ((p[0] * q[0]) % M - \
         (p[1] * q[1]) % M + M) % M
     
    y = ((p[0] * q[1]) % M + \
         (p[1] * q[0]) % M) %M
 
    # Return the multiplied value
    return [x, y]
 
# Function to calculate the
# complex modular exponentiation
def compPow(complex, k, M):
     
    # Here, res is initialised to (1 + i0)
    res = [1, 0]
     
    while (k > 0):
         
        # If k is odd
        if (k & 1):
             
            # Multiply 'complex' with 'res'
            res = Multiply(res, complex, M)
         
        # Make complex as complex*complex
        complex = Multiply(complex, complex, M)
         
        # Make k as k/2
        k = k >> 1
     
    # Return the required answer
    return res
 
# Driver code
if __name__ == '__main__':
    A = 7
    B = 3
    k = 10
    M = 97
     
    # Function call
    ans = compPow([A, B], k, M)
     
    print(ans[0], "+ i", end = "")
    print(ans[1])
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
     
class GFG
{
public class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to multiply two complex numbers modulo M
static pair Multiply (pair p, pair q, int M)
{
    // Multiplication of two complex numbers is
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
     
    int x = ((p.first * q.first) % M -
             (p.second * q.second) % M + M) % M;
     
    int y = ((p.first * q.second) % M +
             (p.second * q.first) % M) % M;
 
    // Return the multiplied value
    return new pair(x, y);
}
 
 
// Function to calculate the
// complex modular exponentiation
static pair compPow(pair complex, int k, int M)
{
    // Here, res is initialised to (1 + i0)
    pair res = new pair(1, 0 );
     
    while (k > 0)
    {
        // If k is odd
        if (k % 2 == 1)
        {
            // Multiply 'complex' with 'res'
            res = Multiply(res, complex, M);
        }
         
        // Make complex as complex*complex
        complex = Multiply(complex, complex, M);
         
        // Make k as k/2
        k = k >> 1;
    }
     
    // Return the required answer
    return res;
}
 
// Driver code
public static void Main(String[] args)
{
    int A = 7, B = 3, k = 10, M = 97;
     
    // Function call
    pair ans = compPow(new pair(A, B), k, M);
     
    Console.WriteLine(ans.first + " + i" +
                      ans.second);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




function pair(first, second) {
    this.first = first;
    this.second = second;
}
 
function multiply(p, q, M) {
   // Multiplication of two complex numbers is
    // (a + ib)(c + id) = (ac - bd) + i(ad + bc)
    let x = ((p.first * q.first) % M - (p.second * q.second) % M + M) % M;
    let y = ((p.first * q.second) % M + (p.second * q.first) % M) % M;
    return new pair(x, y);
}
 
function compPow(complex, k, M) {
    let res = new pair(1, 0);
    while (k > 0) {
        if (k % 2 === 1) {
            res = multiply(res, complex, M);
        }
        complex = multiply(complex, complex, M);
        k = k >> 1;
    }
    return res;
}
 
let A = 7, B = 3, k = 10, M = 97;
let ans = compPow(new pair(A, B), k, M);
console.log(ans.first + " + i" + ans.second);
 
// This code is contributed by abn95knd1.


Output:

25 + i29

Time complexity: O(log k).

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments