Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIModify Binary Tree by replacing each node with nearest power of minimum...

Modify Binary Tree by replacing each node with nearest power of minimum of previous level

Given a Binary Tree consisting of N nodes, the task is to print the Level Order Traversal after replacing the value of each node with its nearest power of the minimum value of the previous level in the original tree.
Note: For any case of two nearest powers, select the maximum among them.

Examples:

Input:    7
            /  \
         4   11
       /
   23
Output: 7 4 11 23 N
Explanation:

  • Node value at level 0 remains unchanged, i.e. 7.
  • Power of 7 nearest to 4 is 71 = 7.
    Power of 7 nearest to 11 is 71 = 7.
    Therefore, nodes at level 1 becomes {7, 7}.
  • Minimum node value at level 1 is 4.
    Power of 4 nearest to 23 is 44 = 16.
    Therefore, node at level 2 becomes {16}.

The resultant tree after completing the above operations is as follows:
              7
            /  \
         4   11
       /
   23

Input:   3
            / \
          2    6
       /   \    \
    45  71  25  
Output: 3 3 9 32 64 N 32

Approach: The idea is to perform the Level Order Traversal using a Queue to solve the problem. 
Follow the steps below to solve the problem:

  • Define a function, say nearestPow(X, Y), to find the nearest power of an integer Y:
    • Find log(X) base Y and store it in a variable, say K.
    • Return YK if abs(X – YK) is less than abs(Y(K + 1) – X). Otherwise, return Y(K + 1).
  • Initialize two variables, say minCurr and minPrev, to store the minimum value of the current level and the minimum value of the previous level respectively.
  • Initially assign minPrev = root.val and initialize a queue, say Q to store the nodes for level order traversal.
  • Iterate while Q is not empty():
    • Store the first node of the queue in a variable, say temp, and delete the first node from queue Q.
    • Assign the value of minCurr to minPrev and update minCurr = 1018.
    • Iterate over the range [0, length(Q) – 1] and update the minCurr as minCurr = min(minCurr, temp.val) and assign the nearest power of the integer minPrev to temp.val.
    • In each iteration of the above step push the temp.left and temp.right if the respective nodes are not NULL.
  • After completing the above steps, print the level order traversal of the updated Tree.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <cmath>
#include <iostream>
#include <queue>
 
using namespace std;
 
// Structure of a Node of a Tree
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int val = 0, TreeNode* left = nullptr,
             TreeNode* right = nullptr)
        : val(val)
        , left(left)
        , right(right)
    {
    }
};
 
// Function to calculate the nearest power of an integer
int nearest_pow(int x, int base)
{
    int k = floor(log(x) / log(base));
    if (abs(pow(base, k) - x) < abs(pow(base, k + 1) - x)) {
        return pow(base, k);
    }
    else {
        return pow(base, k + 1);
    }
}
 
// Iterative method to perform Level Order Traversal
void print_level_order(TreeNode* root)
{
    // Base Case
    if (!root) {
        return;
    }
 
    // Queue for Level Order Traversal
    queue<TreeNode*> q;
 
    // Enqueue root
    q.push(root);
 
    while (!q.empty()) {
        // Stores number of nodes at current level
        int count = q.size();
 
        // Dequeue all nodes of the current level and
        // Enqueue all nodes of the next level
        while (count--) {
            TreeNode* temp = q.front();
            q.pop();
            cout << temp->val << " ";
 
            // Push the left subtree if not empty
            if (temp->left) {
                q.push(temp->left);
            }
 
            // Push the right subtree if not empty
            if (temp->right) {
                q.push(temp->right);
            }
        }
    }
}
 
// Function to replace each node with nearest power of
// minimum value of previous level
void replace_nodes(TreeNode* root)
{
    // Stores the nodes of tree to traverse in level order
    queue<TreeNode*> que;
    que.push(root);
 
    // Stores current level
    int lvl = 1;
 
    // Stores the minimum value of previous level
    int min_prev = root->val;
 
    // Stores the minimum value of current level
    int min_curr = root->val;
 
    // Iterate while True
    while (true) {
        // Stores length of queue
        int length = que.size();
 
        // If length is zero
        if (length == 0) {
            break;
        }
 
        // Assign min_prev = min_curr
        min_prev = min_curr;
        min_curr = 10000000000;
 
        // Iterate over range [0, length - 1]
        while (length--) {
            // Stores current node of tree
            TreeNode* temp = que.front();
            que.pop();
 
            // Update min_curr
            min_curr = min(temp->val, min_curr);
 
            // Replace current node with nearest power of
            // min_prev
 
            temp->val = nearest_pow(temp->val, min_prev);
 
            // Left child is not Null
            if (temp->left) {
                // Append temp->left node in the queue
                que.push(temp->left);
            }
 
            // If right child is not Null
            if (temp->right) {
                // Append temp->right node in the queue
                que.push(temp->right);
            }
        }
        // Increment level by one
        lvl++;
    }
 
    // Function Call to perform the Level Order Traversal
    print_level_order(root);
}
 
int main()
{
    // Given Tree
    TreeNode* root = new TreeNode(7);
    root->left = new TreeNode(4);
    root->right = new TreeNode(11);
    root->left->right = new TreeNode(23);
 
    replace_nodes(root);
 
    return 0;
}
 
// This code is contributed by Potta Lokesh


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
 
// Structure of a Node of a Tree
class TreeNode {
  int val;
  TreeNode left;
  TreeNode right;
  TreeNode(int val, TreeNode left, TreeNode right)
  {
    this.val = val;
    this.left = left;
    this.right = right;
  }
}
 
class GFG {
 
  // Function to calculate the nearest power of an integer
  static int nearest_pow(int x, int base1)
  {
    int k = (int)Math.floor(Math.log(x)
                            / Math.log(base1));
    if (Math.abs(Math.pow(base1, k) - x)
        < Math.abs(Math.pow(base1, k + 1) - x)) {
      return (int)Math.pow(base1, k);
    }
    else {
      return (int)Math.pow(base1, k + 1);
    }
  }
 
  // Iterative method to perform Level Order Traversal
  static void print_level_order(TreeNode root)
  {
    // base1 Case
    if (root == null) {
      return;
    }
 
    // Queue for Level Order Traversal
    Queue<TreeNode> q = new LinkedList<>();
 
    // Enqueue root
    q.add(root);
 
    while (!q.isEmpty()) {
      // Stores number of nodes at current level
      int count = q.size();
 
      // Dequeue all nodes of the current level and
      // Enqueue all nodes of the next level
      while (count-- > 0) {
        TreeNode temp = q.poll();
        System.out.print(temp.val + " ");
 
        // Add the left subtree if not empty
        if (temp.left != null) {
          q.add(temp.left);
        }
 
        // Add the right subtree if not empty
        if (temp.right != null) {
          q.add(temp.right);
        }
      }
    }
  }
 
  // Function to replace each node with nearest power of
  // minimum value of previous level
  static void replace_nodes(TreeNode root)
  {
    // Queue for level order traversal
    Queue<TreeNode> que = new LinkedList<TreeNode>();
    // Enqueue the root
    que.add(root);
 
    // Stores current level
    int lvl = 1;
 
    // Stores the minimum value of previous level
    int min_prev = root.val;
 
    // Stores the minimum value of current level
    int min_curr = root.val;
 
    // Iterate while the queue is not empty
    while (true) {
      // Stores number of nodes at current level
      int length = que.size();
 
      // If length is zero
      if (length == 0) {
        break;
      }
 
      // Assign min_prev = min_curr
      min_prev = min_curr;
      min_curr = Integer.MAX_VALUE;
 
      while (length-- > 0) {
        // Dequeue a node from the queue
        TreeNode temp = que.poll();
        // Update min_curr
        min_curr = Math.min(temp.val, min_curr);
 
        // Replace current node with nearest power
        // of min_prev
        temp.val = nearest_pow(temp.val, min_prev);
 
        // Add the left and right children to the
        // queue
        if (temp.left != null) {
          que.add(temp.left);
        }
        if (temp.right != null) {
          que.add(temp.right);
        }
      }
      // Increment level by one
      lvl++;
    }
 
    // Function Call to perform the Level Order
    // Traversal
    print_level_order(root);
  }
 
  public static void main(String[] args)
  {
    // Given Tree
    TreeNode root = new TreeNode(7, null, null);
    root.left = new TreeNode(4, null, null);
    root.right = new TreeNode(11, null, null);
    root.left.right = new TreeNode(23, null, null);
 
    replace_nodes(root);
  }
}
 
// This code is contributed by lokeshmvs21.


Python3




# Python program for the above approach
import math
 
# Structure of a Node of a Tree
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
 
 
# Function to calculate the
# nearest power of an integer
def nearestPow(x, base):
    k = int(math.log(x, base))
     
    if abs(base**k - x) < abs(base**(k+1) - x):
        return base**k
    else:
        return base**(k+1)
 
# Iterative method to perform
# Level Order Traversal
def printLevelOrder(root):
 
    # Base Case
    if root is None:
        return
 
    # Queue for Level
    # Order Traversal
    q = []
 
    # Enqueue root
    q.append(root)
 
    while q:
 
        # Stores number of
        # nodes at current level
        count = len(q)
 
        # Dequeue all nodes of the current
        # level and Enqueue all nodes of
        # the next level
        while count > 0:
            temp = q.pop(0)
            print(temp.val, end=' ')
 
            # Push the left subtree
            # if not empty
            if temp.left:
                q.append(temp.left)
 
            # Push the right subtree
            # if not empty
            if temp.right:
                q.append(temp.right)
 
            # Decrement count by 1
            count -= 1
 
 
# Function to replace each node
# with nearest power of minimum
# value of previous level
def replaceNodes(root):
 
    # Stores the nodes of tree to
    # traverse in level order
    que = [root]
 
    # Stores current level
    lvl = 1
 
    # Stores the minimum
    # value of previous level
    minPrev = root.val
 
    # Stores the minimum
    # value of current level
    minCurr = root.val
 
    # Iterate while True
    while True:
 
        # Stores length of queue
        length = len(que)
 
        # If length is zero
        if not length:
            break
 
        # Assign minPrev = minCurr
        minPrev = minCurr
        minCurr = 1000000000000000000
 
        # Iterate over range [0, length - 1]
        while length:
 
            # Stores current node of tree
            temp = que.pop(0)
 
            # Update minCurr
            minCurr = min(temp.val, minCurr)
 
            # Replace current node with
            # nearest power of minPrev
            temp.val = nearestPow(temp.val, minPrev)
 
            # Left child is not Null
            if temp.left:
 
                # Append temp.left node
                # in the queue
                que.append(temp.left)
 
            # If right child is not Null
            if temp.right:
 
                # Append temp.right node
                # in the queue
                que.append(temp.right)
 
            # Decrement length by one
            length -= 1
 
        # Increment level by one
        lvl += 1
 
    # Function Call to perform the
    # Level Order Traversal
    printLevelOrder(root)
 
 
# Driver Code
 
# Given Tree
root = TreeNode(7)
root.left = TreeNode(4)
root.right = TreeNode(11)
root.left.right = TreeNode(23)
 
replaceNodes(root)


Javascript




<script>
 
// JavaScript program for the above approach
 
// Structure of a Node of a Tree
class TreeNode{
    constructor(val = 0, left = null, right = null){
        this.val = val
        this.left = left
        this.right = right
    }
}
 
// Function to calculate the
// nearest power of an integer
function nearestPow(x, base){
    let k = Math.floor(Math.log(x)/ Math.log(base))
    if(Math.abs(Math.pow(base,k) - x) < Math.abs(Math.pow(base,k+1) - x))
        return Math.pow(base,k)
    else
        return Math.pow(base,k+1)
}
 
// Iterative method to perform
// Level Order Traversal
function printLevelOrder(root){
 
    // Base Case
    if(root == null)
        return
 
    // Queue for Level
    // Order Traversal
    let q = []
 
    // Enqueue root
    q.push(root)
 
    while(q){
 
        // Stores number of
        // nodes at current level
        let count = q.length
 
        // Dequeue all nodes of the current
        // level and Enqueue all nodes of
        // the next level
        while(count > 0){
            let temp = q.shift()
            document.write(temp.val,' ')
 
            // Push the left subtree
            // if not empty
            if(temp.left)
                q.push(temp.left)
 
            // Push the right subtree
            // if not empty
            if(temp.right)
                q.push(temp.right)
 
            // Decrement count by 1
            count -= 1
        }
    }
}
 
// Function to replace each node
// with nearest power of minimum
// value of previous level
function replaceNodes(root){
 
    // Stores the nodes of tree to
    // traverse in level order
    let que = [root]
 
    // Stores current level
    let lvl = 1
 
    // Stores the minimum
    // value of previous level
    let minPrev = root.val
 
    // Stores the minimum
    // value of current level
    let minCurr = root.val
 
    // Iterate while True
    while(true){
 
        // Stores length of queue
        let Length = que.length
 
        // If length is zero
        if(!Length)
            break
 
        // Assign minPrev = minCurr
        minPrev = minCurr
        minCurr = 1000000000000000000
 
        // Iterate over range [0, length - 1]
        while(Length){
 
            // Stores current node of tree
            let temp = que.shift()
 
            // Update minCurr
            minCurr = Math.min(temp.val, minCurr)
 
            // Replace current node with
            // nearest power of minPrev
            temp.val = nearestPow(temp.val, minPrev)
 
            // Left child is not Null
            if(temp.left)
 
                // Append temp.left node
                // in the queue
                que.push(temp.left)
 
            // If right child is not Null
            if(temp.right)
 
                // Append temp.right node
                // in the queue
                que.push(temp.right)
 
            // Decrement length by one
            Length--
        }
        // Increment level by one
        lvl++
    }
 
    // Function Call to perform the
    // Level Order Traversal
    printLevelOrder(root)
}
 
// Driver Code
 
// Given Tree
let root = new TreeNode(7)
root.left = new TreeNode(4)
root.right = new TreeNode(11)
root.left.right = new TreeNode(23)
 
replaceNodes(root)
 
// This code is contributed by shinjanpatra
</script>


C#




using System;
using System.Collections.Generic;
 
// Structure of a Node of a Tree
class TreeNode {
    public int val;
    public TreeNode left;
    public TreeNode right;
    public TreeNode(int val = 0, TreeNode left = null,
                    TreeNode right = null)
    {
        this.val = val;
        this.left = left;
        this.right = right;
    }
}
 
class GFG {
 
    // Function to calculate the nearest power of an integer
    static int nearest_pow(int x, int base1)
    {
        int k = (int)Math.Floor(Math.Log(x)
                                / Math.Log(base1));
        if (Math.Abs(Math.Pow(base1, k) - x)
            < Math.Abs(Math.Pow(base1, k + 1) - x)) {
            return (int)Math.Pow(base1, k);
        }
        else {
            return (int)Math.Pow(base1, k + 1);
        }
    }
 
    // Iterative method to perform Level Order Traversal
    static void print_level_order(TreeNode root)
    {
        // base1 Case
        if (root == null) {
            return;
        }
 
        // Queue for Level Order Traversal
        Queue<TreeNode> q = new Queue<TreeNode>();
 
        // Enqueue root
        q.Enqueue(root);
 
        while (q.Count > 0) {
            // Stores number of nodes at current level
            int count = q.Count;
 
            // Dequeue all nodes of the current level and
            // Enqueue all nodes of the next level
            while (count-- > 0) {
                TreeNode temp = q.Dequeue();
                Console.Write(temp.val + " ");
 
                // Add the left subtree if not empty
                if (temp.left != null) {
                    q.Enqueue(temp.left);
                }
 
                // Add the right subtree if not empty
                if (temp.right != null) {
                    q.Enqueue(temp.right);
                }
            }
        }
    }
 
    // Function to replace each node with nearest power of
    // minimum value of previous level
    static void replace_nodes(TreeNode root)
    {
        // Stores the nodes of tree to traverse in level
        // order
        Queue<TreeNode> que = new Queue<TreeNode>();
        que.Enqueue(root);
 
        // Stores current level
        int lvl = 1;
 
        // Stores the minimum value of previous level
        int min_prev = root.val;
 
        // Stores the minimum value of current level
        int min_curr = root.val;
 
        // Iterate while True
        while (true) {
            // Stores length of queue
            int length = que.Count;
 
            // If length is zero
            if (length == 0) {
                break;
            }
 
            // Assign min_prev = min_curr
            min_prev = min_curr;
            min_curr = Int32.MaxValue;
 
            // Iterate over range [0  length - 1]
            while (length-- > 0) {
                // Stores current node of tree
                TreeNode temp = que.Dequeue();
 
                // Update min_curr
                min_curr = Math.Min(temp.val, min_curr);
 
                // Replace current node with nearest power
                // of min_prev
 
                temp.val = nearest_pow(temp.val, min_prev);
 
                // Left child is not Null
                if (temp.left != null) {
                    // Append temp.left node in the queue
                    que.Enqueue(temp.left);
                }
 
                // If right child is not Null
                if (temp.right != null) {
                    // Append temp.right node in the queue
                    que.Enqueue(temp.right);
                }
            }
            // Increment level by one
            lvl++;
        }
 
        // Function Call to perform the Level Order
        // Traversal
        print_level_order(root);
    }
 
    public static void Main(string[] args)
    {
        // Given Tree
        TreeNode root = new TreeNode(7);
        root.left = new TreeNode(4);
        root.right = new TreeNode(11);
        root.left.right = new TreeNode(23);
 
        replace_nodes(root);
    }
}


Output:

7 7 7 16

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
23 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments