Tuesday, January 7, 2025
Google search engine
HomeLanguagesDynamic ProgrammingModify array to maximize sum of adjacent differences

Modify array to maximize sum of adjacent differences

Given an array, we need to modify the values of this array in such a way that the sum of absolute differences between two consecutive elements is maximized. If the value of an array element is X, then we can change it to either 1 or X. 

Examples : 

Input  : arr[] = [3, 2, 1, 4, 5]
Output : 8
We can modify above array as,
Modified arr[] = [3, 1, 1, 4, 1]
Sum of differences = 
|1-3| + |1-1| + |4-1| + |1-4| = 8
Which is the maximum obtainable value 
among all choices of modification.

Input  : arr[] = [1, 8, 9]
Output : 14

Method 1: This problem is a variation of Assembly Line Scheduling and can be solved using dynamic programming. We need to maximize sum of differences each value X should be changed to either 1 or X. To achieve above stated condition we take a dp array of array length size with 2 columns, where dp[i][0] stores the maximum value of sum using first i elements only if ith array value is modified to 1 and dp[i][1] stores the maximum value of sum using first i elements if ith array value is kept as a[i] itself.Main thing to observe is, 

C++




//  C++ program to get maximum consecutive element
// difference sum
#include <bits/stdc++.h>
using namespace std;
 
// Returns maximum-difference-sum with array
// modifications allowed.
int maximumDifferenceSum(int arr[], int N)
{
    // Initialize dp[][] with 0 values.
    int dp[N][2];
    for (int i = 0; i < N; i++)
        dp[i][0] = dp[i][1] = 0;
 
    for (int i=0; i<(N-1); i++)
    {
        /*  for [i+1][0] (i.e. current modified
            value is 1), choose maximum from
            dp[i][0] + abs(1 - 1) = dp[i][0] and
            dp[i][1] + abs(1 - arr[i])   */
        dp[i + 1][0] = max(dp[i][0],
                          dp[i][1] + abs(1-arr[i]));
 
        /*  for [i+1][1] (i.e. current modified value
            is arr[i+1]), choose maximum from
            dp[i][0] + abs(arr[i+1] - 1)    and
            dp[i][1] + abs(arr[i+1] - arr[i])*/
        dp[i + 1][1] = max(dp[i][0] + abs(arr[i+1] - 1),
                     dp[i][1] + abs(arr[i+1] - arr[i]));
    }
 
    return max(dp[N-1][0], dp[N-1][1]);
}
 
//  Driver code to test above methods
int main()
{
    int arr[] = {3, 2, 1, 4, 5};
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << maximumDifferenceSum(arr, N) << endl;
    return 0;
}


Java




// java program to get maximum consecutive element
// difference sum
import java.io.*;
 
class GFG
{
    // Returns maximum-difference-sum with array
    // modifications allowed.
    static int maximumDifferenceSum(int arr[], int N)
    {
        // Initialize dp[][] with 0 values.
        int dp[][] = new int [N][2];
 
        for (int i = 0; i < N; i++)
            dp[i][0] = dp[i][1] = 0;
     
        for (int i = 0; i< (N - 1); i++)
        {
            /* for [i+1][0] (i.e. current modified
            value is 1), choose maximum from
            dp[i][0] + abs(1 - 1) = dp[i][0] and
            dp[i][1] + abs(1 - arr[i]) */
            dp[i + 1][0] = Math.max(dp[i][0],
                           dp[i][1] + Math.abs(1 - arr[i]));
     
            /* for [i+1][1] (i.e. current modified value
            is arr[i+1]), choose maximum from
            dp[i][0] + abs(arr[i+1] - 1) and
            dp[i][1] + abs(arr[i+1] - arr[i])*/
            dp[i + 1][1] = Math.max(dp[i][0] +
                           Math.abs(arr[i + 1] - 1),
                           dp[i][1] + Math.abs(arr[i + 1]
                           - arr[i]));
        }
     
        return Math.max(dp[N - 1][0], dp[N - 1][1]);
    }
 
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = {3, 2, 1, 4, 5};
        int N = arr.length;
        System.out.println( maximumDifferenceSum(arr, N));
                 
    }
}
 
// This code is contributed by vt_m


Python3




# Python3 program to get maximum
# consecutive element difference sum
 
# Returns maximum-difference-sum
# with array modifications allowed.
def maximumDifferenceSum(arr, N):
     
    # Initialize dp[][] with 0 values.
    dp = [[0, 0] for i in range(N)]
    for i in range(N):
        dp[i][0] = dp[i][1] = 0
 
    for i in range(N - 1):
         
        # for [i+1][0] (i.e. current modified
        # value is 1), choose maximum from
        # dp[i][0] + abs(1 - 1) = dp[i][0]
        # and dp[i][1] + abs(1 - arr[i])
        dp[i + 1][0] = max(dp[i][0], dp[i][1] +
                             abs(1 - arr[i]))
 
        # for [i+1][1] (i.e. current modified value
        # is arr[i+1]), choose maximum from
        # dp[i][0] + abs(arr[i+1] - 1) and
        # dp[i][1] + abs(arr[i+1] - arr[i])
        dp[i + 1][1] = max(dp[i][0] + abs(arr[i + 1] - 1),
                           dp[i][1] + abs(arr[i + 1] - arr[i]))
 
    return max(dp[N - 1][0], dp[N - 1][1])
 
# Driver Code
if __name__ == '__main__':
    arr = [3, 2, 1, 4, 5]
    N = len(arr)
    print(maximumDifferenceSum(arr, N))
 
# This code is contributed by PranchalK


C#




// C# program to get maximum consecutive element
// difference sum
using System;
 
class GFG {
     
    // Returns maximum-difference-sum with array
    // modifications allowed.
    static int maximumDifferenceSum(int []arr, int N)
    {
         
        // Initialize dp[][] with 0 values.
        int [,]dp = new int [N,2];
 
        for (int i = 0; i < N; i++)
            dp[i,0] = dp[i,1] = 0;
     
        for (int i = 0; i < (N - 1); i++)
        {
            /* for [i+1][0] (i.e. current modified
            value is 1), choose maximum from
            dp[i][0] + abs(1 - 1) = dp[i][0] and
            dp[i][1] + abs(1 - arr[i]) */
            dp[i + 1,0] = Math.Max(dp[i,0],
                        dp[i,1] + Math.Abs(1 - arr[i]));
     
            /* for [i+1][1] (i.e. current modified value
            is arr[i+1]), choose maximum from
            dp[i][0] + abs(arr[i+1] - 1) and
            dp[i][1] + abs(arr[i+1] - arr[i])*/
            dp[i + 1,1] = Math.Max(dp[i,0] +
                        Math.Abs(arr[i + 1] - 1),
                        dp[i,1] + Math.Abs(arr[i + 1]
                        - arr[i]));
        }
     
        return Math.Max(dp[N - 1,0], dp[N - 1,1]);
    }
 
    // Driver code
    public static void Main ()
    {
        int []arr = {3, 2, 1, 4, 5};
        int N = arr.Length;
         
        Console.Write( maximumDifferenceSum(arr, N));
    }
}
 
// This code is contributed by nitin mittal.


PHP




<?php
// PHP program to get maximum
// consecutive element
// difference sum
 
// Returns maximum-difference-sum
// with array modifications allowed.
function maximumDifferenceSum($arr, $N)
{
    // Initialize dp[][]
    // with 0 values.
    $dp = array(array());
    for ($i = 0; $i < $N; $i++)
        $dp[$i][0] = $dp[$i][1] = 0;
 
    for ($i = 0; $i < ($N - 1); $i++)
    {
        /* for [i+1][0] (i.e. current
            modified value is 1), choose
            maximum from dp[$i][0] +
            abs(1 - 1) = dp[i][0] and
            dp[$i][1] + abs(1 - arr[i]) */
        $dp[$i + 1][0] = max($dp[$i][0],
                            $dp[$i][1] +
                            abs(1 - $arr[$i]));
 
        /* for [i+1][1] (i.e. current
            modified value is arr[i+1]),
            choose maximum from dp[i][0] +
            abs(arr[i+1] - 1) and dp[i][1] +
            abs(arr[i+1] - arr[i])*/
        $dp[$i + 1][1] = max($dp[$i][0] +
                             abs($arr[$i + 1] - 1),
                                       $dp[$i][1] +
                                 abs($arr[$i + 1] -
                                        $arr[$i]));
    }
 
    return max($dp[$N - 1][0], $dp[$N - 1][1]);
}
 
// Driver Code
$arr = array(3, 2, 1, 4, 5);
$N = count($arr);
echo maximumDifferenceSum($arr, $N);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
    // Javascript program to get maximum consecutive element difference sum
     
    // Returns maximum-difference-sum with array
    // modifications allowed.
    function maximumDifferenceSum(arr, N)
    {
        // Initialize dp[][] with 0 values.
        let dp = new Array(N);
        for (let i = 0; i < N; i++)
        {
            dp[i] = new Array(2);
            for (let j = 0; j < 2; j++)
            {
                dp[i][j] = 0;
            }
        }
   
        for (let i = 0; i < N; i++)
            dp[i][0] = dp[i][1] = 0;
       
        for (let i = 0; i< (N - 1); i++)
        {
            /* for [i+1][0] (i.e. current modified
            value is 1), choose maximum from
            dp[i][0] + abs(1 - 1) = dp[i][0] and
            dp[i][1] + abs(1 - arr[i]) */
            dp[i + 1][0] = Math.max(dp[i][0],
                           dp[i][1] + Math.abs(1 - arr[i]));
       
            /* for [i+1][1] (i.e. current modified value
            is arr[i+1]), choose maximum from
            dp[i][0] + abs(arr[i+1] - 1) and
            dp[i][1] + abs(arr[i+1] - arr[i])*/
            dp[i + 1][1] = Math.max(dp[i][0] +
                           Math.abs(arr[i + 1] - 1),
                           dp[i][1] + Math.abs(arr[i + 1]
                           - arr[i]));
        }
       
        return Math.max(dp[N - 1][0], dp[N - 1][1]);
    }
     
    let arr = [3, 2, 1, 4, 5];
    let N = arr.length;
    document.write( maximumDifferenceSum(arr, N));
     
    // This code is contributed by rameshtravel07.
</script>


Output

8

Time Complexity : O(N) 
Auxiliary Space : O(N)
This article is contributed by Utkarsh Trivedi

Method 2:
For calculating answers at any moment, only previous state values are needed. So instead of using the entire DP array, we can reduce space complexity by using just two variables prev_change and prev_nochange.

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
int maximumDifferenceSum(int arr[], int n) {
  int prev_change = 0, prev_nochange = 0;
  for (int i = 1; i < n; i++) {
    int change = max(prev_change, arr[i - 1] - 1 + prev_nochange);
    int nochange = max(prev_nochange + abs(arr[i] - arr[i - 1]), arr[i] - 1 + prev_change);
 
    prev_change = change;
    prev_nochange = nochange;
  }
 
  return max(prev_change, prev_nochange);
}
 
int main() {
  int arr[] = {3, 2, 1, 4, 5};
  int N = sizeof(arr) / sizeof(arr[0]);
  cout << maximumDifferenceSum(arr, N) << endl;
  return 0;
}
 
// This code is contributed by lokeshpotta20.


Java




import java.io.*;
import java.util.*;
  
class GFG {
    static int maximumDifferenceSum(int arr[], int n)
    {
        int prev_change = 0, prev_nochange = 0;
        for (int i = 1; i < n; i++)
        {
            int change = Math.max(prev_change, arr[i - 1] - 1 + prev_nochange);
            int nochange = Math.max(prev_nochange + Math.abs(arr[i] - arr[i - 1]),
                           arr[i] - 1 + prev_change);
         
            prev_change = change;
            prev_nochange = nochange;
        }
         
        return Math.max(prev_change, prev_nochange);
    }
 
    public static void main(String args[])
    {
        int arr[] = {3, 2, 1, 4, 5};
        int N = arr.length;
        System.out.println(maximumDifferenceSum(arr, N));
    }
}


Python3




def maximumDifferenceSum(arr, n):
  prev_change, prev_nochange = 0,0
 
  for i in range(1,n):
 
    change = max(prev_change , arr[i-1] -1 + prev_nochange)
    nochange = max(prev_nochange +abs(arr[i] - arr[i-1]) , arr[i]-1 + prev_change)
 
    prev_change = change
    prev_nochange = nochange
 
  return max(prev_change, prev_nochange)   
     
if __name__ == '__main__':
    arr = [3, 2, 1, 4, 5]
    N = len(arr)
    print(maximumDifferenceSum(arr, N))


C#




// C# program for the above approach
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG {
 
  static int maximumDifferenceSum(int[] arr, int n)
  {
    int prev_change = 0, prev_nochange = 0;
    for (int i = 1; i < n; i++) {
      int change = Math.Max(prev_change, arr[i - 1] - 1 + prev_nochange);
      int nochange = Math.Max(prev_nochange + Math.Abs(arr[i] - arr[i - 1]), arr[i] - 1 + prev_change);
 
      prev_change = change;
      prev_nochange = nochange;
    }
 
    return Math.Max(prev_change, prev_nochange);
  }
 
  static public void Main()
  {
    int[] arr = {3, 2, 1, 4, 5};
    int N = arr.Length;
    Console.Write(maximumDifferenceSum(arr, N));
  }
}
 
// This code is contributed by ratiagrawal.


Javascript




// Javascript program for the above approach
 
function maximumDifferenceSum( arr, n) {
  let prev_change = 0, prev_nochange = 0;
  for (let i = 1; i < n; i++) {
    let change = Math.max(prev_change, arr[i - 1] - 1 + prev_nochange);
    let nochange = Math.max(prev_nochange + Math.abs(arr[i] -
                   arr[i - 1]), arr[i] - 1 + prev_change);
 
    prev_change = change;
    prev_nochange = nochange;
  }
 
  return Math.max(prev_change, prev_nochange);
}
 
let arr = [3, 2, 1, 4, 5];
let N = arr.length;
console.log(maximumDifferenceSum(arr, N));


Output

8

Time Complexity: O(N)  
Auxiliary Space: O(1)
 

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments