Monday, September 1, 2025
HomeLanguagesML | Handle Missing Data with Simple Imputer

ML | Handle Missing Data with Simple Imputer

SimpleImputer is a scikit-learn class which is helpful in handling the missing data in the predictive model dataset. It replaces the NaN values with a specified placeholder. 
It is implemented by the use of the SimpleImputer() method which takes the following arguments :
 

missing_values : The missing_values placeholder which has to be imputed. By default is NaN 
strategy : The data which will replace the NaN values from the dataset. The strategy argument can take the values – ‘mean'(default), ‘median’, ‘most_frequent’ and ‘constant’. 
fill_value : The constant value to be given to the NaN data using the constant strategy. 
 

Code: Python code illustrating the use of SimpleImputer class.
 

Python3




import numpy as np
 
# Importing the SimpleImputer class
from sklearn.impute import SimpleImputer
 
# Imputer object using the mean strategy and
# missing_values type for imputation
imputer = SimpleImputer(missing_values = np.nan,
                        strategy ='mean')
 
data = [[12, np.nan, 34], [10, 32, np.nan],
        [np.nan, 11, 20]]
 
print("Original Data : \n", data)
# Fitting the data to the imputer object
imputer = imputer.fit(data)
 
# Imputing the data    
data = imputer.transform(data)
 
print("Imputed Data : \n", data)


Output 
 

Original Data : 

[[12, nan, 34]
[10, 32, nan]
[nan, 11, 20]]


Imputed Data : 

[[12, 21.5, 34]
[10, 32, 27]
[11, 11, 20]]

Remember: The mean or median is taken along the column of the matrix
 

RELATED ARTICLES

Most Popular

Dominic
32251 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6619 POSTS0 COMMENTS
Nicole Veronica
11792 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11841 POSTS0 COMMENTS
Shaida Kate Naidoo
6735 POSTS0 COMMENTS
Ted Musemwa
7016 POSTS0 COMMENTS
Thapelo Manthata
6689 POSTS0 COMMENTS
Umr Jansen
6707 POSTS0 COMMENTS