Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum value of X such that sum of arr – X raised...

Minimum value of X such that sum of arr[i] – X raised to the power of brr[i] is less than or equal to K

Given an array arr[] and brr[] both consisting of N integers and a positive integer K, the task is to find the minimum value of X such that the sum of the maximum of (arr[i] – X, 0) raised to the power of brr[i] for all array elements (arr[i], brr[i]) is at most K.

Examples:

Input: arr[] = {2, 1, 4, 3, 5} brr[] = { 4, 3, 2, 3, 1}, K = 12  
Output: 2
Explanation:
Consider the value of X as 2, then the value of the given expression is:
 => max(2 – 2, 0)4 + max(1 – 2, 0)3 + max(4 – 2, 0)2 + max(3 – 2, 0)3 +max(5 – 2, 0)1
=> 04 + 03 + 22 + 13 + 31 = 8 <= K(= 12).
Therefore, the resultant value of X is 2, which is minimum.

Input: arr[] = {2, 1, 4, 3, 5} brr[] = { 4, 3, 2, 3, 1}, K = 22
Output: 1

Naive Approach: The simplest approach to solve the given problem is to check for every value of X from 0 to the maximum element of the array and if there exists any value of X satisfying the given conditions, then print that value of X and break out of the loop

Time Complexity: O(N*M), where, M is the maximum element of the array.
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by using Binary Search to find the value of X and if a particular value of X satisfies the above condition, then, all the greater values will also satisfy, therefore, then try to search for lower values. Follow the steps below to solve the problem:

  • Define a function check(a[], b[], k, n, x):
    • Initialize the variable sum as 0 to calculate the desired sum from the array arr[] and brr[].
    • Iterate over the range [0, N] using variable i and add the value of pow(max(arr[i] – x, 0), brr[i]) to the variable sum.
    • If the value of sum is less than equal to K, then, return true. Otherwise, return false.
  • Initialize the variables, say low as 0 and high as maximum value of the array.
  • Iterate in a while loop till low is less than high and perform the following steps:
    • Initialize the variable mid as the average of low and high.
    • Check the value of mid to see whether it satisfies the given conditions by calling the function check(arr[], brr[], k, n, mid).
    • If the function check(arr[], brr[], n, k, mid) returns true then, update the high to mid. Otherwise, update the value of low to (mid + 1).
    • After completing the above steps, return the value of low as the result from the function.
  • After performing the above steps, print the value of low as the desired value of X as the answer.

Below is the implementation of the above approach:

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if there exists an
// X that satisfies the given conditions
bool check(int a[], int b[], int k, int n, int x)
{
    int sum = 0;
 
    // Find the required value of the
    // given expression
    for (int i = 0; i < n; i++) {
        sum = sum + pow(max(a[i] - x, 0), b[i]);
    }
 
    if (sum <= k)
        return true;
    else
        return false;
}
 
// Function to find the minimum value
// of X using binary search.
int findMin(int a[], int b[], int n, int k)
{
    // Boundaries of the Binary Search
    int l = 0, u = *max_element(a, a + n);
 
    while (l < u) {
 
        // Find the middle value
        int m = (l + u) / 2;
 
        // Check for the middle value
        if (check(a, b, k, n, m)) {
 
            // Update the upper
            u = m;
        }
        else {
 
            // Update the lower
            l = m + 1;
        }
    }
    return l;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 1, 4, 3, 5 };
    int brr[] = { 4, 3, 2, 3, 1 };
    int K = 12;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << findMin(arr, brr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
   
// Function to check if it is possible to
// get desired result
static boolean check(int a[], int b[], int k, int x)
{
    int sum = 0;
    for(int i = 0; i < a.length; i++)
    {
        sum = sum + (int)Math.pow(
                         Math.max(a[i] - x, 0), b[i]);
    }
    if (sum <= k)
        return true;
    else
        return false;
}
 
// Function to find the minimum value
// of X using binary search.
static int findMin(int a[], int b[], int n, int k)
{
     
    // Boundaries of the Binary Search
    int l = 0, u = (int)1e9;
 
    while (l < u)
    {
         
        // Find the middle value
        int m = (l + u) / 2;
         
        // Check for the middle value
        if (check(a, b, k, m))
         
            // Update the upper
            u = m;
        else
         
            // Update the lower
            l = m + 1;
    }
    return l;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 5;
    int k = 12;
    int a[] = { 2, 1, 4, 3, 5 };
    int b[] = { 4, 3, 2, 3, 1 };
     
    System.out.println(findMin(a, b, n, k));
}
}
 
// This code is contributed by ayush_dragneel


Python3




# Python 3 program for the above approach
 
# Function to check if there exists an
# X that satisfies the given conditions
def check(a, b, k, n, x):
    sum = 0
 
    # Find the required value of the
    # given expression
    for i in range(n):
        sum = sum + pow(max(a[i] - x, 0), b[i])
 
    if (sum <= k):
        return True
    else:
        return False
 
# Function to find the minimum value
# of X using binary search.
def findMin(a, b, n, k):
    # Boundaries of the Binary Search
    l = 0
    u = max(a)
    while (l < u):
        # Find the middle value
        m = (l + u) // 2
 
        # Check for the middle value
        if (check(a, b, k, n, m)):
            # Update the upper
            u = m
        else:
 
            # Update the lower
            l = m + 1
    return l
 
# Driver Code
if __name__ == '__main__':
    arr = [2, 1, 4, 3, 5]
    brr = [4, 3, 2, 3, 1]
    K = 12
    N = len(arr)
    print(findMin(arr, brr, N, K))
 
    # This code is contributed by ipg2016107.


C#




// C# program for the above approach
using System;
 
public class GFG{
   
// Function to check if it is possible to
// get desired result
static bool check(int []a, int []b, int k, int x)
{
    int sum = 0;
    for(int i = 0; i < a.Length; i++)
    {
        sum = sum + (int)Math.Pow(
                         Math.Max(a[i] - x, 0), b[i]);
    }
    if (sum <= k)
        return true;
    else
        return false;
}
 
// Function to find the minimum value
// of X using binary search.
static int findMin(int []a, int []b, int n, int k)
{
     
    // Boundaries of the Binary Search
    int l = 0, u = (int)1e9;
 
    while (l < u)
    {
         
        // Find the middle value
        int m = (l + u) / 2;
         
        // Check for the middle value
        if (check(a, b, k, m))
         
            // Update the upper
            u = m;
        else
         
            // Update the lower
            l = m + 1;
    }
    return l;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 5;
    int k = 12;
    int []a = { 2, 1, 4, 3, 5 };
    int []b = { 4, 3, 2, 3, 1 };
     
    Console.WriteLine(findMin(a, b, n, k));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
        // JavaScript program for the above approache9 + 7;
 
 
        // Function to check if there exists an
        // X that satisfies the given conditions
        function check(a, b, k, n, x) {
            let sum = 0;
 
            // Find the required value of the
            // given expression
            for (let i = 0; i < n; i++) {
                sum = sum + Math.pow(Math.max(a[i] - x, 0), b[i]);
            }
 
            if (sum <= k)
                return true;
            else
                return false;
        }
        function max_element(a) {
            let maxi = Number.MIN_VALUE;
 
            for (let i = 0; i < a.length; i++) {
                if (a[i] > maxi) {
                    maxi = a[i];
                }
            }
            return maxi;
        }
        // Function to find the minimum value
        // of X using binary search.
        function findMin(a, b, n, k) {
            // Boundaries of the Binary Search
            let l = 0, u = max_element(a);
 
            while (l < u) {
 
                // Find the middle value
                let m = Math.floor((l + u) / 2);
 
                // Check for the middle value
                if (check(a, b, k, n, m)) {
 
                    // Update the upper
                    u = m;
                }
                else {
 
                    // Update the lower
                    l = m + 1;
                }
            }
            return l;
        }
 
        // Driver Code
        let arr = [2, 1, 4, 3, 5];
        let brr = [4, 3, 2, 3, 1];
        let K = 12;
        let N = arr.length;
        document.write(findMin(arr, brr, N, K));
 
// This code is contributed by Potta Lokesh
    </script>


Output

2

Time Complexity: O(N*log M), where, M is the maximum element of the array.
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments