Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimum time to reach from Node 1 to N if travel is...

Minimum time to reach from Node 1 to N if travel is allowed only when node is Green

Given an undirected connected graph of N nodes and M edges. Each node has a light but at a time it can be either green or red. Initially, all the node is of green color. After every T seconds, the color of light changes from green to red and vice-versa. It is possible to travel from node U to node V only if the color of node U is green. The time taken required to travel through any edges is C seconds. Find the minimum amount of time required to travel from node 1 to node N.

Examples:

Input: N = 5, M = 5, T = 3, C = 5
           Edges[] = {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {2, 5}}
Output: 11
Explanation: At 0sec, the color of node 1 is green, so travel from node 1 to node 2 in 5sec.
Now at 5sec, the color of node 2 is red so wait 1sec to change into green.
Now at 6sec, the color of node 2 is green, so travel from node 2 to node 5 in 5sec.
Total time = 5(from node 1 to node 2) + 1(wait at node 2) + 5(from node 2 to node 5) = 11 sec.

Approach: The given problem can be solved by using Breadth-First Search and Dijkstra Algorithm because the problem is similar to the shortest path problem. Follow the steps below to solve the problem:

  • Initialize a queue, say Q that stores the nodes that are to be traversed and the time required to reach that node.
  • Create a boolean array, say V that stores whether the present node is visited or not.
  • Push node 1 and time 0 as a pair in the queue Q.
  • Consider that there is always green light and traveling through edges requires 1 second then simply run the BFS and find the shortest time required to reach from node 1 to node N and store it in a variable, say time.
  • Create a function findTime which finds the time if traveling through edges requires C seconds and the light color changes after T seconds by performing the following steps:
    • Initialize a variable ans as 0 that will store the minimum time required to reach from node 1 to node N.
    • Iterate in the range [0, time] using the variable i and perform the following steps:
      • If (ans/T) %2 = 1, then modify the value of ans as (ans/T + 1)* T + C.
      • Otherwise, add C to the variable ans.
  • Print ans as the answer.

Below is the implementation of the above approach:  

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find min edge
int minEdge(vector<vector<int> > X,int N, int M, int T, int C) {
 
    // Initialize queue and push [1, 0]
    queue<pair<int, int> > Q;
    Q.push({1, 0});
 
    // Create visited array to keep the
    // track if node is visited or not
    vector<int> V(N+1, false);
 
    // Run infinite loop
      int crnt, c;
    while(1) {
       
        crnt = Q.front().first;
          c = Q.front().second;
          Q.pop();
 
        // If node is N, terminate loop
        if (crnt == N)
            break;
 
        // Travel adjacent nodes of crnt
        for(int _ : X[crnt]) {
            // Check whether we visited previously or not
            if (!V[_]) {
               
                // Push into queue and make as true
                Q.push({_, c + 1});
                V[_] = true;
             }
         }
    }
   
    return c;
}
 
// Function to Find time required to reach 1 to N
int findTime(int T, int C, int c) {
   
    int ans = 0;
    for (int _ = 0; _ < c; _++) {
 
        // Check color of node is red or green
        if ((ans/T) % 2)
           
            // Add C sec from next green color time
            ans = (ans/T + 1)*T + C;
        else
            // Add C
            ans += C;
     }
     
    // Return the answer
    return ans;
}
 
// Driver Code
int main() {
 
    // Given Input
    int N = 5;
    int M = 5;
    int T = 3;
    int C = 5;
    vector<vector<int> > X{{}, {2, 3, 4}, {4, 5}, {1}, {1, 2}, {2}};
 
    // Function Call
    int c = minEdge(X, N, M, T, C);
    int ans = findTime(T, C, c);
 
    // Print total time
    cout << (ans) << endl;
   
    return 0;
}
 
// This code is contributed by Dharanendra L V.


Java




import java.util.AbstractMap.SimpleEntry;
import java.util.ArrayDeque;
import java.util.Queue;
import java.util.Vector;
 
public class MinEdge {
 
  // Function to find min edge
  public static int minEdge(Vector<Vector<Integer> > X,
                            int N, int M, int T, int C)
  {
    // Initialize queue and push [1, 0]
    Queue<SimpleEntry<Integer, Integer> > Q
      = new ArrayDeque<
      SimpleEntry<Integer, Integer> >();
    Q.add(new SimpleEntry<Integer, Integer>(1, 0));
 
    // Create visited array to keep the
    // track if node is visited or not
    Vector<Boolean> V = new Vector<Boolean>(N + 1);
    for (int i = 0; i <= N; i++) {
      V.add(false);
    }
 
    // Run infinite loop
    int crnt, c;
    while (true) {
 
      crnt = Q.peek().getKey();
      c = Q.peek().getValue();
      Q.remove();
 
      // If node is N, terminate loop
      if (crnt == N)
        break;
 
      // Travel adjacent nodes of crnt
      for (int i : X.get(crnt)) {
        // Check whether we visited previously or
        // not
        if (!V.get(i)) {
 
          // Push into queue and make as true
          Q.add(new SimpleEntry<Integer, Integer>(
            i, c + 1));
          V.set(i, true);
        }
      }
    }
 
    return c;
  }
 
  // Function to Find time required to reach 1 to N
  public static int findTime(int T, int C, int c)
  {
 
    int ans = 0;
    for (int i = 0; i < c; i++) {
 
      // Check color of node is red or green
      if ((ans / T) % 2 == 1)
 
        // Add C sec from next green color time
        ans = (ans / T + 1) * T + C;
      else
        // Add C
        ans += C;
    }
 
    // Return the answer
    return ans;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
 
    // Given Input
    int N = 5;
    int M = 5;
    int T = 3;
    int C = 5;
    Vector<Vector<Integer> > X
      = new Vector<Vector<Integer> >();
    for (int i = 0; i <= N; i++) {
      X.add(new Vector<Integer>());
    }
    X.get(1).add(2);
    X.get(1).add(3);
    X.get(1).add(4);
    X.get(2).add(4);
    X.get(2).add(5);
    X.get(3).add(1);
    X.get(4).add(1);
    X.get(4).add(2);
    X.get(5).add(2);
 
    int c = minEdge(X, N, M, T, C);
    int ans = findTime(T, C, c);
    System.out.println(ans);
  }
}
 
// This code is contributed by aadityamaharshi21.


Python3




# Python program for the above approach
 
# Import library for Queue
from queue import Queue
 
# Function to find min edge
def minEdge():
 
    # Initialize queue and push [1, 0]
    Q = Queue()
    Q.put([1, 0])
 
    # Create visited array to keep the
    # track if node is visited or not
    V = [False for _ in range(N + 1)]
 
    # Run infinite loop
    while 1:
        crnt, c = Q.get()
 
        # If node is N, terminate loop
        if crnt == N:
            break
 
        # Travel adjacent nodes of crnt
        for _ in X[crnt]:
            # Check whether we visited previously or not
            if not V[_]:
               
                # Push into queue and make as true
                Q.put([_, c + 1])
                V[_] = True
 
    return c
 
# Function to Find time required to reach 1 to N
def findTime(c):
    ans = 0
    for _ in range(c):
 
        # Check color of node is red or green
        if (ans//T) % 2:
           
            # Add C sec from next green color time
            ans = (ans//T + 1)*T + C
        else:
            # Add C
            ans += C
     
    # Return the answer
    return ans
 
# Driver Code
if __name__ == "__main__":
 
    # Given Input
    N = 5
    M = 5
    T = 3
    C = 5
    X = [[], [2, 3, 4], [4, 5], [1], [1, 2], [2]]
 
    # Function Call
    c = minEdge()
    ans = findTime(c)
 
    # Print total time
    print(ans)


C#




using System;
using System.Collections.Generic;
 
class Program
{
    // Function to find min edge
    static int MinEdge(List<int>[] X, int N, int M, int T, int C)
    {
        // Initialize queue and push [1, 0]
        Queue<int[]> Q = new Queue<int[]>();
        Q.Enqueue(new int[] { 1, 0 });
 
        // Create visited array to keep the
        // track if node is visited or not
        bool[] V = new bool[N + 1];
 
        // Run infinite loop
        int crnt, c;
        while (true)
        {
            int[] arr = Q.Dequeue();
            crnt = arr[0];
            c = arr[1];
 
            // If node is N, terminate loop
            if (crnt == N)
                break;
 
            // Travel adjacent nodes of crnt
            foreach (int i in X[crnt])
            {
                // Check whether we visited previously or not
                if (!V[i])
                {
                    // Push into queue and make as true
                    Q.Enqueue(new int[] { i, c + 1 });
                    V[i] = true;
                }
            }
        }
 
        return c;
    }
 
    // Function to Find time required to reach 1 to N
    static int FindTime(int T, int C, int c)
    {
        int ans = 0;
        for (int i = 0; i < c; i++)
        {
            // Check color of node is red or green
            if ((ans / T) % 2 == 1)
            {
                // Add C sec from next green color time
                ans = (ans / T + 1) * T + C;
            }
            else
            {
                // Add C
                ans += C;
            }
        }
 
        // Return the answer
        return ans;
    }
 
    static void Main(string[] args)
    {
        // Given Input
        int N = 5;
        int M = 5;
        int T = 3;
        int C = 5;
        List<int>[] X = new List<int>[N + 1];
        for (int i = 0; i <= N; i++)
        {
            X[i] = new List<int>();
        }
        X[1].AddRange(new int[] { 2, 3, 4 });
        X[2].AddRange(new int[] { 4, 5 });
        X[3].Add(1);
        X[4].AddRange(new int[] { 1, 2 });
        X[5].Add(2);
 
        // Function Call
        int c = MinEdge(X, N, M, T, C);
        int ans = FindTime(T, C, c);
 
        // Print total time
        Console.WriteLine(ans);
    }
}


Javascript




// Function to find min edge
function minEdge(X, N, M, T, C) {
 
    // Initialize queue and push [1, 0]
    let Q = [];
    Q.push([1, 0]);
 
    // Create visited array to keep the
    // track if node is visited or not
    let V = Array(N+1).fill(false);
 
    // Run infinite loop
    let crnt, c;
    while(true) {
       
        [crnt, c] = Q.shift();
 
        // If node is N, terminate loop
        if (crnt === N)
            break;
 
        // Travel adjacent nodes of crnt
        for(let _ of X[crnt]) {
            // Check whether we visited previously or not
            if (!V[_]) {
               
                // Push into queue and make as true
                Q.push([_, c + 1]);
                V[_] = true;
             }
         }
    }
   
    return c;
}
 
// Function to Find time required to reach 1 to N
function findTime(T, C, c) {
   
    let ans = 0;
    for (let _ = 0; _ < c; _++) {
 
        // Check color of node is red or green
        if ((ans/T) % 2)
           
            // Add C sec from next green color time
            ans = (ans/T + 1)*T + C;
        else
            // Add C
            ans += C;
     }
     
    // Return the answer
    return ans;
}
 
// Driver Code
function main() {
 
    // Given Input
    let N = 5;
    let M = 5;
    let T = 3;
    let C = 5;
    let X = [[], [2, 3, 4], [4, 5], [1], [1, 2], [2]];
 
    // Function Call
    let c = minEdge(X, N, M, T, C);
    let ans = findTime(T, C, c);
 
    // Print total time
    console.log(ans);
   
    return 0;
}
 
main();
 
// This code is contributed by aadityamaharshi21.


Output

11

Time Complexity: O(N + M)
Space Complexity: O(N + M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments