Monday, January 6, 2025
Google search engine
HomeData Modelling & AIMinimum sum of all absolute differences of same column elements in adjacent...

Minimum sum of all absolute differences of same column elements in adjacent rows in a given Matrix

Given a matrix mat[][] having N rows and M columns, the task is to find the minimum distance between two adjacent rows where the distance between two rows is defined as the sum of all absolute differences between two elements present at the same column in the two rows.

Examples:

Input: mat[][] = {{1, 4, 7, 10}, {2, 5, 8, 11}, {6, 9, 3, 12}}
Output: 4
Explanation: The distance between the first two rows can be calculated as (2-1) + (5-4) + (8-7) + (11-10) = 4. Similarly, the distance between the 2nd and 3rd row can be calculated as (6-2) + (9-5) + (8-3) + (12-11) = 14. Hence, the minimum distance among all adjacent rows is 4.             

Input: mat[][] = {{1, 25, 81}, {2, 36, 100}, {9, 49, 50}, {16, 64, 25}}
Output : 31

 

Approach:  The given problem is an implementation-based problem that can be solved by iterating through the matrix row-wise and calculating the distances over all pairs of adjacent rows. Maintain the minimum of all the calculated distances in a variable which is the required answer.

Below is the implementation of the above approach : 

C++




// C++ program of the above approach.
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum distance
// between two adjacent rows in mat
int calcDist(int N, int M, vector<vector<int> > mat)
{
    // Stores the required value
    int ans = INT_MAX;
 
    // Loop to traverse all the
    // pair of rows in mat[][]
    for (int i = 0; i < N - 1; i++) {
        // Stores the distance
        int dist = 0;
 
        // Loop to calculate
        // the distance
        for (int j = 0; j < M; j++) {
            dist += abs(mat[i][j] - mat[i + 1][j]);
        }
 
        // Update ans
        ans = min(ans, dist);
    }
 
    // Return Answer
    return ans;
}
 
// C++ program of the above approach
int main()
{
    vector<vector<int> > mat = { { 1, 4, 7, 10 },
                                 { 2, 5, 8, 11 },
                                 { 6, 9, 3, 2 } };
    cout << calcDist(mat.size(), mat[0].size(), mat);
 
    return 0;
}


Java




// JAVA program of the above approach.
import java.util.*;
class GFG
{
 
  // Function to find minimum distance
  // between two adjacent rows in mat
  public static int
    calcDist(int N, int M,
             ArrayList<ArrayList<Integer> > mat)
  {
 
    // Stores the required value
    int ans = Integer.MAX_VALUE;
 
    // Loop to traverse all the
    // pair of rows in mat[][]
    for (int i = 0; i < N - 1; i++)
    {
 
      // Stores the distance
      int dist = 0;
 
      // Loop to calculate
      // the distance
      for (int j = 0; j < M; j++) {
        dist += Math.abs(mat.get(i).get(j)
                         - mat.get(i + 1).get(j));
      }
 
      // Update ans
      ans = Math.min(ans, dist);
    }
 
    // Return Answer
    return ans;
  }
 
  // JAVA program of the above approach
  public static void main(String[] args)
  {
    ArrayList<ArrayList<Integer> > mat
      = new ArrayList<ArrayList<Integer> >();
    ArrayList<Integer> temp1 = new ArrayList<Integer>(
      Arrays.asList(1, 4, 7, 10));
    ArrayList<Integer> temp2 = new ArrayList<Integer>(
      Arrays.asList(2, 5, 8, 11));
    ArrayList<Integer> temp3 = new ArrayList<Integer>(
      Arrays.asList(6, 9, 3, 2));
    mat.add(temp1);
    mat.add(temp2);
    mat.add(temp3);
 
    System.out.print(
      calcDist(mat.size(), mat.get(0).size(), mat));
  }
}
 
// This code is contributed by Taranpreet


Python3




# python3 program of the above approach.
INT_MAX = 2147483647
 
# Function to find minimum distance
# between two adjacent rows in mat
def calcDist(N, M, mat):
 
    # Stores the required value
    ans = INT_MAX
 
    # Loop to traverse all the
    # pair of rows in mat[][]
    for i in range(0, N - 1):
       
        # Stores the distance
        dist = 0
 
        # Loop to calculate
        # the distance
        for j in range(0, M):
            dist += abs(mat[i][j] - mat[i + 1][j])
 
        # Update ans
        ans = min(ans, dist)
 
    # Return Answer
    return ans
 
if __name__ == "__main__":
 
    mat = [[1, 4, 7, 10],
           [2, 5, 8, 11],
           [6, 9, 3, 2]]
 
    print(calcDist(len(mat), len(mat[0]), mat))
 
    # This code is contributed by rakeshsahni


C#




// C# program of the above approach.
using System;
class GFG
{
 
  // Function to find minimum distance
  // between two adjacent rows in mat
  static int calcDist(int N, int M, int[, ] mat)
  {
 
    // Stores the required value
    int ans = Int32.MaxValue;
 
    // Loop to traverse all the
    // pair of rows in mat[][]
    for (int i = 0; i < N - 1; i++) {
      // Stores the distance
      int dist = 0;
 
      // Loop to calculate
      // the distance
      for (int j = 0; j < M; j++) {
        dist += Math.Abs(mat[i, j] - mat[i + 1, j]);
      }
 
      // Update ans
      ans = Math.Min(ans, dist);
    }
 
    // Return Answer
    return ans;
  }
 
  // Criver code
  public static void Main()
  {
    int[, ] mat = { { 1, 4, 7, 10 },
                   { 2, 5, 8, 11 },
                   { 6, 9, 3, 2 } };
    Console.Write(calcDist(mat.GetLength(0),
                           mat.GetLength(1), mat));
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find minimum distance
       // between two adjacent rows in mat
       function calcDist(N, M, mat)
       {
        
           // Stores the required value
           let ans = Number.MAX_VALUE;
 
           // Loop to traverse all the
           // pair of rows in mat[][]
           for (let i = 0; i < N - 1; i++) {
               // Stores the distance
               let dist = 0;
 
               // Loop to calculate
               // the distance
               for (let j = 0; j < M; j++) {
                   dist += Math.abs(mat[i][j] - mat[i + 1][j]);
               }
 
               // Update ans
               ans = Math.min(ans, dist);
           }
 
           // Return Answer
           return ans;
       }
 
       let mat = [[1, 4, 7, 10],
       [2, 5, 8, 11],
       [6, 9, 3, 2]];
       document.write(calcDist(mat.length, mat[0].length, mat));
 
      // This code is contributed by Potta Lokesh
   </script>


 
 

Output

4

 

Time Complexity: O(N*M)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments