Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimum steps to reduce N to 0 by given operations

Minimum steps to reduce N to 0 by given operations

Give an integer N, the task is to find the minimum number of moves to reduce N to 0 by one of the following operations:

  • Reduce N by 1.
  • Reduce N to (N/2), if N is divisible by 2.
  • Reduce N to (N/3), if N is divisible by 3.

Examples:

Input: N = 10
Output: 4
Explanation: 
Here N = 10
Step 1: Reducing N by 1 i.e., 10 – 1 = 9.  
Step 2: Since 9 is divisible by 3, reduce it to N/3 = 9/3 = 3
Step 3: Since again 3 is divisible by 3 again repeating step 2, i.e., 3/3 = 1.
Step 4: 1 can be reduced by the step 1, i.e., 1-1 = 0  
Hence, 4 steps are needed to reduce N to 0.

Input: N = 6
Output: 3
Explanation: 
Here N = 6
Step 1: Since 6 is divisible by 2, then 6/2 =3
Step 2: since 3 is divisible by 3, then 3/3 = 1. 
Step 3: Reduce N to N-1 by 1, 1-1 = 0.
Hence, 3 steps are needed to reduce N to 0.

Naive Approach: The idea is to use recursion for all the possible moves. Below are the steps:

  1. Observe that base case for the problem, if N < 2 then for all the cases the answer will be N itself.
  2. At every value of N, choose between 2 possible cases:
    • Reduce n till n % 2 == 0 and then update n /= 2 with count = 1 + n%2 + f(n/2)
    • Reduce n till n % 3 == 0 and then update n /= 3 with count = 1 + n%3 + f(n/3)
  3. Both the computation results in the recurrence relation as:

 count = 1 + min(n%2 + f(n/2), n%3 + f(n/3))
where, f(n) is the minimum  of moves to reduce N to 0.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// number to steps to reduce N to 0
int minDays(int n)
{
     
    // Base case
    if (n < 1)
        return n;
         
    // Recursive call to count the
    // minimum steps needed
    int cnt = 1 + min(n % 2 + minDays(n / 2),
                      n % 3 + minDays(n / 3));
 
    // Return the answer
    return cnt;
}
 
// Driver Code
int main()
{
     
    // Given number N
    int N = 6;
     
    // Function call
    cout << minDays(N);
     
    return 0;
}
 
// This code is contributed by 29AjayKumar


Java




// Java program for the above approach
class GFG{
   
    // Function to find the minimum
    // number to steps to reduce N to 0
    static int minDays(int n)
    {
 
        // Base case
        if (n < 1)
            return n;
 
        // Recursive Call to count the
        // minimum steps needed
        int cnt = 1 + Math.min(n % 2 + minDays(n / 2),
                               n % 3 + minDays(n / 3));
 
        // Return the answer
        return cnt;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given Number N
        int N = 6;
 
        // Function Call
        System.out.print(minDays(N));
    }
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 program for the above approach
 
# Function to find the minimum
# number to steps to reduce N to 0
def minDays(n):
 
    # Base case
    if n < 1:
        return n
       
    # Recursive Call to count the
    # minimum steps needed
    cnt = 1 + min(n % 2 + minDays(n // 2),
                  n % 3 + minDays(n // 3))
 
    # Return the answer
    return cnt
 
# Driver Code
 
# Given Number N
N = 6
 
# Function Call
print(str(minDays(N)))


C#




// C# program for the above approach
using System;
class GFG{
 
// Function to find the minimum
// number to steps to reduce N to 0
static int minDays(int n)
{   
    // Base case
    if (n < 1)
        return n;
 
    // Recursive call to count the
    // minimum steps needed
    int cnt = 1 + Math.Min(n % 2 + minDays(n / 2),
                           n % 3 + minDays(n / 3));
 
    // Return the answer
    return cnt;
}
 
// Driver Code
public static void Main(String[] args)
{   
    // Given number N
    int N = 6;
 
    // Function call
    Console.Write(minDays(N));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the minimum
// number to steps to reduce N to 0
function minDays(n)
{
     
    // Base case
    if (n < 1)
        return n;
         
    // Recursive call to count the
    // minimum steps needed
    var cnt = 1 + Math.min(n % 2 + minDays(parseInt(n / 2)),
                      n % 3 + minDays(parseInt(n / 3)));
 
    // Return the answer
    return cnt;
}
 
// Driver Code
// Given number N
var N = 6;
 
// Function call
document.write( minDays(N));
 
 
</script>


Output

4

Time Complexity: O(2N)
Auxiliary Space: O(1)

Efficient Approach: The idea is to use Dynamic Programming. The above recursive approach results in TLE because of the number of repeated subproblems. To optimize the above method using a dictionary to keep track of values whose recursive call is already performed to reduce the further computation such that value can be accessed faster.

Below is the implementation of the above approach:

C++




// C++ program for
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// number to steps to reduce N to 0
int count(int n)
{
  // Dictionary for storing
  // the precomputed sum
  map<int, int> dp;
 
  // Bases Cases
  dp[0] = 0;
  dp[1] = 1;
 
  // Check if n is not in dp then
  // only call the function so as
  // to reduce no of recursive calls
  if ((dp.find(n) == dp.end()))
    dp[n] = 1 + min(n % 2 +
                    count(n / 2), n % 3 +
                    count(n / 3));
 
  // Return the answer
  return dp[n];
}
 
// Driver Code
int main()
{   
  // Given number N
  int N = 6;
 
  // Function call
  cout << count(N);
}
 
// This code is contributed by gauravrajput1


Java




// Java program for the above approach
import java.util.HashMap;
 
class GFG{
     
// Function to find the minimum
// number to steps to reduce N to 0
static int count(int n)
{
     
    // Dictionary for storing
    // the precomputed sum
    HashMap<Integer,
            Integer> dp = new HashMap<Integer,
                                      Integer>();
 
    // Bases Cases
    dp.put(0, 0);
    dp.put(1, 1);
 
    // Check if n is not in dp then
    // only call the function so as
    // to reduce no of recursive calls
    if (!dp.containsKey(n))
        dp.put(n, 1 + Math.min(n % 2 +
                 count(n / 2), n % 3 +
                 count(n / 3)));
 
    // Return the answer
    return dp.get(n);
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given number N
    int N = 6;
 
    // Function call
    System.out.println(String.valueOf((count(N))));
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the above approach
 
# Function to find the minimum
# number to steps to reduce N to 0
def count(n):
   
    # Dictionary for storing
    # the precomputed sum
    dp = dict()
 
    # Bases Cases
    dp[0] = 0
    dp[1] = 1
 
    # Check if n is not in dp then
    # only call the function so as
    # to reduce no of recursive calls
    if n not in dp:
        dp[n] = 1 + min(n % 2 + count(n//2), n % 3 + count(n//3))
 
    # Return the answer
    return dp[n]
 
 
# Driver Code
 
# Given Number N
N = 6
 
# Function Call
print(str(count(N)))


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG{
     
// Function to find the minimum
// number to steps to reduce N to 0
static int count(int n)
{   
    // Dictionary for storing
    // the precomputed sum
    Dictionary<int,
               int> dp = new Dictionary<int,
                                        int>();
 
    // Bases Cases
    dp.Add(0, 0);
    dp.Add(1, 1);
 
    // Check if n is not in dp then
    // only call the function so as
    // to reduce no of recursive calls
    if (!dp.ContainsKey(n))
        dp.Add(n, 1 + Math.Min(n % 2 + count(n / 2),
                               n % 3 + count(n / 3)));
 
    // Return the answer
    return dp[n];
}
 
// Driver Code
public static void Main(String[] args)
{   
    // Given number N
    int N = 6;
 
    // Function call
    Console.WriteLine(String.Join("",
                                  (count(N))));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript program for
// the above approach
 
// Function to find the minimum
// number to steps to reduce N to 0
function count(n)
{
  // Dictionary for storing
  // the precomputed sum
  var dp = new Map();
 
  // Bases Cases
  dp.set(0, 0);
  dp.set(1, 1);
 
  // Check if n is not in dp then
  // only call the function so as
  // to reduce no of recursive calls
  if (!dp.has(n))
    dp.set(n, 1 + Math.min(n % 2 +
                    count(parseInt(n / 2)), n % 3 +
                    count(parseInt(n / 3))));
 
  // Return the answer
  return dp.get(n);
}
 
// Driver Code
 
// Given number N
var N = 6;
 
// Function call
document.write( count(N));
 
</script>


Output

3

Time Complexity: O(Nlog N), where N represents the given integer.
Auxiliary Space: O(N), where N represents the given integer.

Efficient approach: Using DP Tabulation method

This method Provided further improves on this by avoiding the use of a map and instead using an array to store the previously computed results. This is more efficient as array access is faster than map access.

Implementation steps : 

  • Create a vector dp of size n+1 and initialize dp[0] to 0 and dp[1] to 1.
  • Loop from i=2 to i=n and for each i, compute the minimum number of steps to reduce i to 0 using the recurrence relation dp[i] = 1 + min(dp[i-1], dp[i/2] (if i is even), dp[i/3] (if i is divisible by 3)).
  • Return dp[n] as the result. 

Implementation:

C++




// C++ program for above approach
#include<bits/stdc++.h>
using namespace std;
 
const int MAXN = 1e6+5;
int dp[MAXN];
 
int count(int n)
{
    // Base Cases
    if(n == 0)
        return 0;
    if(n == 1)
        return 1;
     
    // Check if n is already computed
    if(dp[n] != 0)
        return dp[n];
 
    // Compute the answer recursively
    int ans = 1 + min(n % 2 + count(n / 2), n % 3 + count(n / 3));
 
    // Store the computed answer
    dp[n] = ans;
 
    // Return the answer
    return ans;
}
 
int main()
{
    // Given number N
    int N = 6;
 
    // Initialize the dp array to 0
    memset(dp, 0, sizeof(dp));
 
    // Function call
    cout << count(N);
}
// this code is contributed by bhardwajji


Java




// Java program for above approach
import java.util.*;
 
class Main {
    static int[] dp = new int[(int)1e6 + 5];
 
    public static int count(int n)
    {
        // Base Cases
        if (n == 0)
            return 0;
        if (n == 1)
            return 1;
 
        // Check if n is already computed
        if (dp[n] != 0)
            return dp[n];
 
        // Compute the answer recursively
        int ans = 1
                  + Math.min(n % 2 + count(n / 2),
                             n % 3 + count(n / 3));
 
        // Store the computed answer
        dp[n] = ans;
 
        // Return the answer
        return ans;
    }
 
    public static void main(String[] args)
    {
        // Given number N
        int N = 6;
 
        // Initialize the dp array to 0
        Arrays.fill(dp, 0);
 
        // Function call
        System.out.println(count(N));
    }
}
// This code is contributed by sarojmcy2e


Python3




MAXN = 1000005
dp = [0] * MAXN
 
 
def count(n):
    # Base Cases
    if n == 0:
        return 0
    if n == 1:
        return 1
 
    # Check if n is already computed
    if dp[n] != 0:
        return dp[n]
 
    # Compute the answer recursively
    ans = 1 + min(n % 2 + count(n // 2), n % 3 + count(n // 3))
 
    # Store the computed answer
    dp[n] = ans
 
    # Return the answer
    return ans
 
 
# Given number N
N = 6
 
# Initialize the dp array to 0
dp = [0] * MAXN
 
# Function call
print(count(N))


C#




using System;
 
class MainClass {
const int MAXN = 1000005;
static int[] dp = new int[MAXN];
  static int count(int n) {
    // Base Cases
    if (n == 0)
        return 0;
    if (n == 1)
        return 1;
 
    // Check if n is already computed
    if (dp[n] != 0)
        return dp[n];
 
    // Compute the answer recursively
    int ans = 1 + Math.Min(n % 2 + count(n / 2), n % 3 + count(n / 3));
 
    // Store the computed answer
    dp[n] = ans;
 
    // Return the answer
    return ans;
}
 
public static void Main() {
    // Given number N
    int N = 6;
 
    // Initialize the dp array to 0
    Array.Fill(dp, 0);
 
    // Function call
    Console.WriteLine(count(N));
}
}


Javascript




// Javascript program for above approach
let dp = new Array(1000005).fill(0);
 
function count(n) {
    // Base Cases
    if (n == 0)
        return 0;
    if (n == 1)
        return 1;
 
    // Check if n is already computed
    if (dp[n] != 0)
        return dp[n];
 
    // Compute the answer recursively
    let ans = 1 + Math.min(n % 2 + count(Math.floor(n / 2)),
        n % 3 + count(Math.floor(n / 3)));
 
    // Store the computed answer
    dp[n] = ans;
 
    // Return the answer
    return ans;
}
 
// Given number N
let N = 6;
 
// Function call
console.log(count(N));


Output

3

 Time Complexity: O(N)
Auxiliary Space: O(N), 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments