Saturday, December 28, 2024
Google search engine
HomeData Modelling & AIMinimum steps to reach the Nth stair in jumps of perfect power...

Minimum steps to reach the Nth stair in jumps of perfect power of 2

Given N stairs, the task is to find the minimum number of jumps of perfect power of 2 requires to reach the Nth stair.

Examples: 

Input: N = 5 
Output: 
Explanation: 
We can take jumps from 0->4->5.
So the minimum jumps require are 2.

Input: N = 23 
Output:
Explanation: 
We can take jumps from 0->1->3->7->23
So the minimum jumps required are 4. 
 

First Approach: Since the jumps are required to be in perfect power of 2. So the count of set bit in the given number N is the minimum number of jumps required to reach Nth stair as the summation of 2i for all set bit index i is equals to N.

Below is the implementation of the above approach:  

C++




// C++ program for the above approach
#include "bits/stdc++.h"
using namespace std;
 
// Function to count the number of jumps
// required to reach Nth stairs.
int stepRequired(int N)
{
 
    int cnt = 0;
 
    // Till N becomes 0
    while (N) {
 
        // Removes the set bits from
        // the right to left
        N = N & (N - 1);
        cnt++;
    }
 
    return cnt;
}
 
// Driver Code
int main()
{
 
    // Number of stairs
    int N = 23;
 
    // Function Call
    cout << stepRequired(N);
    return 0;
}


Java




// Java program for the above approach
 
import java.util.*;
 
class GFG{
 
// Function to count the number of jumps
// required to reach Nth stairs.
static int stepRequired(int N)
{
 
    int cnt = 0;
 
    // Till N becomes 0
    while (N > 0) {
 
        // Removes the set bits from
        // the right to left
        N = N & (N - 1);
        cnt++;
    }
 
    return cnt;
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Number of stairs
    int N = 23;
 
    // Function Call
    System.out.print(stepRequired(N));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 program for the above approach
 
# Function to count the number of jumps
# required to reach Nth stairs.
def stepRequired(N):
 
    cnt = 0;
 
    # Till N becomes 0
    while (N > 0):
 
        # Removes the set bits from
        # the right to left
        N = N & (N - 1);
        cnt += 1;
    return cnt;
 
# Driver Code
if __name__ == '__main__':
 
    # Number of stairs
    N = 23;
 
    # Function Call
    print(stepRequired(N));
     
# This code is contributed by 29AjayKumar


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count the number of
// jumps required to reach Nth stairs.
static int stepRequired(int N)
{
    int cnt = 0;
 
    // Till N becomes 0
    while (N > 0)
    {
 
        // Removes the set bits from
        // the right to left
        N = N & (N - 1);
        cnt++;
    }
 
    return cnt;
}
 
// Driver Code
public static void Main(String[] args)
{
 
    // Number of stairs
    int N = 23;
 
    // Function Call
    Console.Write(stepRequired(N));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to count the number of jumps
// required to reach Nth stairs.
function stepRequired(N)
{
    let cnt = 0;
 
    // Till N becomes 0
    while (N)
    {
         
        // Removes the set bits from
        // the right to left
        N = N & (N - 1);
        cnt++;
    }
 
    return cnt;
}
 
// Driver Code
 
// Number of stairs
let N = 23;
 
// Function Call
document.write(stepRequired(N));
 
// This code is contributed by Surbhi Tyagi
 
</script>


Output: 

4

 

Time Complexity: O(log N)
 Auxiliary Space: O(1)

Second Approach: Since the jumps are required to be in perfect power of 2. We can observe that log2 function gives the highest perfect power of 2 which can be achieved less than N if we typecast it to an integer. So we can subtract the pow(2,(int)log2(N)) each time from N till its value is greater than 0 while incrementing cnt at the same time.

C++14




#include <bits/stdc++.h>
 
using namespace std;
 
int stepRequired(int& N)
{
  
    int cnt = 0;
     
    //until N is reached
    while(N>0)
    {
        //subtract highest perfect power of 2 we can reach from previous level
        N-=pow(2,(int)log2(N));
         
        //increment cnt for total number of steps taken
        cnt++;
    }
    return cnt;
}
 
int main()
{
  
    // Number of stairs
    int N = 23;
  
    // Function Call
    cout << stepRequired(N);
    return 0;
}


Java




// Java program for above approach
import java.util.*;
 
class GFG
{
 
static int stepRequired(int N)
{
   
    int cnt = 0;
      
    //until N is reached
    while(N>0)
    {
        //subtract highest perfect power of 2 we can reach from previous level
        N-= Math.pow(2, (int)(Math.log(N) / Math.log(2)));
          
        //increment cnt for total number of steps taken
        cnt++;
    }
    return cnt;
}
 
public static void main(String[] args) {
         
    // Number of stairs
    int N = 23;
   
    // Function Call
    System.out.println(stepRequired(N));
}
}
 
// This code is contributed by sanjoy_62.


Python3




# Python code is contributed by shinjanpatra
import math
 
def stepRequired(N):
  
    cnt = 0
     
    # until N is reached
    while(N > 0):
 
        # subtract highest perfect power of 2 we can reach from previous level
        N -= math.pow(2,math.floor(math.log2(N)))
         
        # increment cnt for total number of steps taken
        cnt += 1
 
    return cnt
 
# driver code
  
# Number of stairs
N = 23
  
# Function Call
print(stepRequired(N))
 
# This code is contributed by shinjanpatra


C#




// C# program for the above approach
using System;
  
class GFG{
  
// Function to count the number of
// jumps required to reach Nth stairs.
static int stepRequired(int N)
{
    int cnt = 0;
  
    //until N is reached
    while (N > 0)
    {
        //subtract highest perfect power of 2 we can reach from previous level
        N-=(int)Math.Pow(2,(int)(Math.Log(N,2)));
  
          
        //increment cnt for total number of steps taken
        cnt++;
    }
  
    return cnt;
}
  
// Driver Code
public static void Main(String[] args)
{
  
    // Number of stairs
    int N = 23;
  
    // Function Call
    Console.Write(stepRequired(N));
}
}
  
// This code is contributed by aditya942003patil


Javascript




<script>
 
// JavaScript code is contributed by shinjanpatra
function stepRequired(N)
{
  
    let cnt = 0;
     
    // until N is reached
    while(N > 0)
    {
        // subtract highest perfect power of 2 we can reach from previous level
        N -= Math.pow(2,Math.floor(Math.log2(N)));
         
        // increment cnt for total number of steps taken
        cnt++;
    }
    return cnt;
}
 
// driver code
  
// Number of stairs
let N = 23;
  
// Function Call
document.write(stepRequired(N));
 
// This code is contributed by shinjanpatra
 
</script>


Time Complexity: O(log N) 

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments