Given a number line from -infinity to +infinity. You start at 0 and can go either to the left or to the right. The condition is that in i’th move, you take i steps.
- Find if you can reach a given number x
- Find the most optimal way to reach a given number x, if we can indeed reach it. For example, 3 can be reached in 2 steps, (0, 1) (1, 3) and 4 can be reached in 3 steps (0, -1), (-1, 1) (1, 4).
Source: Flipkart Interview Question
The important thing to note is we can reach any destination as it is always possible to make a move of length 1. At any step i, we can move forward i, then backward i + 1.
Below is a recursive solution suggested by Arpit Thapar here.
- Since distance of + 5 and – 5 from 0 is same, hence we find answer for absolute value of destination.
- We use a recursive function which takes as arguments:
- Source Vertex
- Value of last step taken
- Destination
- If at any point source vertex = destination; return number of steps.
- Otherwise we can go in both of the possible directions. Take the minimum of steps in both cases.
- From any vertex we can go to :
- (current source + last step +1) and
- (current source – last step -1)
- From any vertex we can go to :
- If at any point, absolute value of our position exceeds the absolute value of our destination then it is intuitive that the shortest path is not possible from here. Hence we make the value of steps INT_MAX, so that when i take the minimum of both possibilities, this one gets eliminated.
If we don’t use this last step, the program enters into an INFINITE recursion and gives RUN TIME ERROR.
Below is the implementation of above idea. Note that the solution only counts steps.
C++
// C++ program to count number of // steps to reach a point #include<bits/stdc++.h> using namespace std; // Function to count number of steps // required to reach a destination // source -> source vertex // step -> value of last step taken // dest -> destination vertex int steps( int source, int step, int dest) { // base cases if ( abs (source) > (dest)) return INT_MAX; if (source == dest) return step; // at each point we can go either way // if we go on positive side int pos = steps(source + step + 1, step + 1, dest); // if we go on negative side int neg = steps(source - step - 1, step + 1, dest); // minimum of both cases return min(pos, neg); } // Driver code int main() { int dest = 11; cout << "No. of steps required to reach " << dest << " is " << steps(0, 0, dest); return 0; } |
Java
// Java program to count number of // steps to reach a point import java.io.*; class GFG { // Function to count number of steps // required to reach a destination // source -> source vertex // step -> value of last step taken // dest -> destination vertex static int steps( int source, int step, int dest) { // base cases if (Math.abs(source) > (dest)) return Integer.MAX_VALUE; if (source == dest) return step; // at each point we can go either way // if we go on positive side int pos = steps(source + step + 1 , step + 1 , dest); // if we go on negative side int neg = steps(source - step - 1 , step + 1 , dest); // minimum of both cases return Math.min(pos, neg); } // Driver Code public static void main(String[] args) { int dest = 11 ; System.out.println( "No. of steps required" + " to reach " + dest + " is " + steps( 0 , 0 , dest)); } } // This code is contributed by Prerna Saini |
Python3
# python program to count number of # steps to reach a point import sys # Function to count number of steps # required to reach a destination # source -> source vertex # step -> value of last step taken # dest -> destination vertex def steps(source, step, dest): #base cases if ( abs (source) > (dest)) : return sys.maxsize if (source = = dest): return step # at each point we can go # either way # if we go on positive side pos = steps(source + step + 1 , step + 1 , dest) # if we go on negative side neg = steps(source - step - 1 , step + 1 , dest) # minimum of both cases return min (pos, neg) # Driver Code dest = 11 ; print ( "No. of steps required" , " to reach " ,dest , " is " , steps( 0 , 0 , dest)); # This code is contributed by Sam007. |
C#
// C# program to count number of // steps to reach a point using System; class GFG { // Function to count number of steps // required to reach a destination // source -> source vertex // step -> value of last step taken // dest -> destination vertex static int steps( int source, int step, int dest) { // base cases if (Math.Abs(source) > (dest)) return int .MaxValue; if (source == dest) return step; // at each point we can go either way // if we go on positive side int pos = steps(source + step + 1, step + 1, dest); // if we go on negative side int neg = steps(source - step - 1, step + 1, dest); // minimum of both cases return Math.Min(pos, neg); } // Driver Code public static void Main() { int dest = 11; Console.WriteLine( "No. of steps required" + " to reach " + dest + " is " + steps(0, 0, dest)); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to count number // of steps to reach a point // Function to count number // of steps required to reach // a destination // source -> source vertex // step -> value of last step taken // dest -> destination vertex function steps( $source , $step , $dest ) { // base cases if ( abs ( $source ) > ( $dest )) return PHP_INT_MAX; if ( $source == $dest ) return $step ; // at each point we // can go either way // if we go on positive side $pos = steps( $source + $step + 1, $step + 1, $dest ); // if we go on negative side $neg = steps( $source - $step - 1, $step + 1, $dest ); // minimum of both cases return min( $pos , $neg ); } // Driver code $dest = 11; echo "No. of steps required to reach " , $dest , " is " , steps(0, 0, $dest ); // This code is contributed by aj_36 ?> |
Javascript
<script> // JavaScript program to count number of // steps to reach a point // Function to count number of steps // required to reach a destination // source -> source vertex // step -> value of last step taken // dest -> destination vertex function steps(source, step, dest) { // base cases if (Math.abs(source) > (dest)) return Number.MAX_SAFE_INTEGER; if (source == dest) return step; // at each point we can go either way // if we go on positive side let pos = steps(source + step + 1, step + 1, dest); // if we go on negative side let neg = steps(source - step - 1, step + 1, dest); // minimum of both cases return Math.min(pos, neg); } // Driver code let dest = 11; document.write( "No. of steps required to reach " + dest + " is " + steps(0, 0, dest)); // This code is contributed by Surbhi Tyagi. </script> |
No. of steps required to reach 11 is 5
Time Complexity : O(2^n)
Auxiliary Space : O(2^n)
Thanks to Arpit Thapar for providing above algorithm and implementation.
Optimized Solution : Find minimum moves to reach target on an infinite line
This article is contributed by Abhay. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!