Given an array arr of length N, the task is to count the minimum number of operations to convert given sequence into a permutation of first N natural numbers (1, 2, …., N). In each operation, increment or decrement an element by one.
Examples:
Input: arr[] = {4, 1, 3, 6, 5}
Output: 4
Apply decrement operation four times on 6
Input : arr[] = {0, 2, 3, 4, 1, 6, 8, 9}
Output : 7
Approach: An efficient approach is to sort the given array and for each element, find the difference between the arr[i] and i(1 based indexing). Find the sum of all such difference, and this will be the minimum steps required.
Below is the implementation of the above approach:
CPP
// C++ program to find minimum number of steps to // convert a given sequence into a permutation #include <bits/stdc++.h> using namespace std; // Function to find minimum number of steps to // convert a given sequence into a permutation int get_permutation( int arr[], int n) { // Sort the given array sort(arr, arr + n); // To store the required minimum // number of operations int result = 0; // Find the operations on each step for ( int i = 0; i < n; i++) { result += abs (arr[i] - (i + 1)); } // Return the answer return result; } // Driver code int main() { int arr[] = { 0, 2, 3, 4, 1, 6, 8, 9 }; int n = sizeof (arr) / sizeof (arr[0]); // Function call cout << get_permutation(arr, n); return 0; } |
Java
// Java program to find minimum number of steps to // convert a given sequence into a permutation import java.util.*; class GFG{ // Function to find minimum number of steps to // convert a given sequence into a permutation static int get_permutation( int arr[], int n) { // Sort the given array Arrays.sort(arr); // To store the required minimum // number of operations int result = 0 ; // Find the operations on each step for ( int i = 0 ; i < n; i++) { result += Math.abs(arr[i] - (i + 1 )); } // Return the answer return result; } // Driver code public static void main(String[] args) { int arr[] = { 0 , 2 , 3 , 4 , 1 , 6 , 8 , 9 }; int n = arr.length; // Function call System.out.print(get_permutation(arr, n)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to find minimum number of steps to # convert a given sequence into a permutation # Function to find minimum number of steps to # convert a given sequence into a permutation def get_permutation(arr, n): # Sort the given array arr = sorted (arr) # To store the required minimum # number of operations result = 0 # Find the operations on each step for i in range (n): result + = abs (arr[i] - (i + 1 )) # Return the answer return result # Driver code if __name__ = = '__main__' : arr = [ 0 , 2 , 3 , 4 , 1 , 6 , 8 , 9 ] n = len (arr) # Function call print (get_permutation(arr, n)) # This code is contributed by mohit kumar 29 |
C#
// C# program to find minimum number of steps to // convert a given sequence into a permutation using System; class GFG{ // Function to find minimum number of steps to // convert a given sequence into a permutation static int get_permutation( int []arr, int n) { // Sort the given array Array.Sort(arr); // To store the required minimum // number of operations int result = 0; // Find the operations on each step for ( int i = 0; i < n; i++) { result += Math.Abs(arr[i] - (i + 1)); } // Return the answer return result; } // Driver Code public static void Main() { int []arr = { 0, 2, 3, 4, 1, 6, 8, 9 }; int n = arr.Length; // Function call Console.Write(get_permutation(arr, n)); } } // This code is contributed by shivanisinghss2110 |
Javascript
<script> // javascript program to find minimum number of steps to // convert a given sequence into a permutation // Function to find minimum number of steps to // convert a given sequence into a permutation function get_permutation(arr , n) { // Sort the given array arr.sort(); // To store the required minimum // number of operations var result = 0; // Find the operations on each step for (i = 0; i < n; i++) { result += Math.abs(arr[i] - (i + 1)); } // Return the answer return result; } // Driver code var arr = [ 0, 2, 3, 4, 1, 6, 8, 9 ]; var n = arr.length; // Function call document.write(get_permutation(arr, n)); // This code is contributed by Amit Katiyar </script> |
7
Time Complexity: O(n*log(n))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!