Friday, January 17, 2025
Google search engine
HomeData Modelling & AIMinimum steps required to rearrange given array to a power sequence of...

Minimum steps required to rearrange given array to a power sequence of 2

Given an array arr[] consisting of N positive integers, the task is to find the minimum steps required to make the given array of integers into a sequence of powers of 2 by the following operations:

  • Reorder the given array. It doesn’t count as a step.
  • For each step, select any index i from the array and change arr[i] to arr[i] ? 1 or arr[i] + 1.

 A sequence is called power sequence of 2, if for every ith index (0 ?i ? N ? 1)
arr[i] = 2i , where N is length of the given array.

Examples:

Input: arr[] = { 1, 8, 2, 10, 6 }
Output: 8
Explanation: 
Reorder the array arr[] to { 1, 2, 6, 8, 10 }
Step 1: Decrement arr[2] to 5
Step 2: Decrement arr[2] to 4
Step 3 – 8: Increment arr[4] by 1. Final value of arr[4] becomes 16.
Therefore, arr[] = {1, 2, 4, 8, 16}
Hence, the minimum number of steps required to obtain the power sequence of 2 is 8.

Input: arr[] = { 1, 3, 4 }
Output: 1

Approach: To solve the given problem, the idea is to sort the array in ascending order  and for every ith index of the sorted array, calculate the absolute difference between arr[i]  and 2i. The sum of the absolute differences gives us the required answer.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the minimum
// steps required to convert given
// array into a power sequence of 2
int minsteps(int arr[], int n)
{
 
    // Sort the array in
    // ascending order
    sort(arr, arr + n);
 
    int ans = 0;
 
    // Calculate the absolute difference
    // between arr[i] and 2^i for each index
    for (int i = 0; i < n; i++) {
        ans += abs(arr[i] - pow(2, i));
    }
 
    // Return the answer
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 8, 2, 10, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << minsteps(arr, n) << endl;
    return 0;
}


Java




// Java Program to implement
// the above approach
 
import java.util.*;
import java.lang.Math;
 
class GFG {
 
    // Function to calculate the minimum
    // steps required to convert given
    // array into a power sequence of 2
    static int minsteps(int arr[], int n)
    {
        // Sort the array in ascending order
        Arrays.sort(arr);
        int ans = 0;
 
        // Calculate the absolute difference
        // between arr[i] and 2^i for each index
        for (int i = 0; i < n; i++) {
            ans += Math.abs(arr[i] - Math.pow(2, i));
        }
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 1, 8, 2, 10, 6 };
        int n = arr.length;
        System.out.println(minsteps(arr, n));
    }
}


Python3




# Python 3 program for the above approach
 
# Function to calculate the minimum
# steps required to convert given
# array into a power sequence of 2
def minsteps(arr, n):
 
    # Sort the array in ascending order
    arr.sort()
    ans = 0
    for i in range(n):
        ans += abs(arr[i]-pow(2, i))
    return ans
 
 
# Driver Code
arr = [1, 8, 2, 10, 6]
n = len(arr)
print(minsteps(arr, n))


C#




// C# Program to the above approach
 
using System;
 
class GFG {
 
    // Function to calculate the minimum
    // steps required to convert given
    // array into a power sequence of 2
    static int minsteps(int[] arr, int n)
    {
 
        // Sort the array in ascending order
        Array.Sort(arr);
        int ans = 0;
 
        // Calculate the absolute difference
        // between arr[i] and 2^i for each index
        for (int i = 0; i < n; i++) {
            ans += Math.Abs(arr[i]
                            - (int)(Math.Pow(2, i)));
        }
        return ans;
    }
 
    // Driver Code
    public static void Main()
    {
 
        int[] arr = { 1, 8, 2, 10, 6 };
        int n = arr.Length;
        Console.WriteLine(minsteps(arr, n));
    }
}


Javascript




<script>
// Javascript program to implement
// the above approach
 
// Function to calculate the minimum
// steps required to convert given
// array into a power sequence of 2
function minsteps(arr, n)
{
 
    // Sort the array in
    // ascending order
    arr.sort((a,b)=>a-b)
 
    var ans = 0;
 
    // Calculate the absolute difference
    // between arr[i] and 2^i for each index
    for (var i = 0; i < n; i++) {
        ans += Math.abs(arr[i] - Math.pow(2, i));
    }
 
    // Return the answer
    return ans;
}
 
// Driver Code
var arr = [ 1, 8, 2, 10, 6 ];
var n = arr.length;
document.write( minsteps(arr, n));
 
// This code is contributed by noob2000.
</script>


 
 

Output: 

8

 

 

Time Complexity: O(NlogN)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments