Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimum steps required to make an array decreasing

Minimum steps required to make an array decreasing

Given an array arr[], the task is to find the minimum steps required to make an array decreasing, where in each step remove all elements which are greater than elements on its left element.
Examples: 

Input: arr[] = {3, 2, 1, 7, 5} 
Output:
Explanation: 
In the above array there are two steps required to make array decreasing – 
Step 1: In step 1 there is one element which is greater than its left, that is 7 > 1. 
Step 2: In step 2 there is one element which is greater than its left, that is 5 > 1.
Input: arr[] = {6, 5, 8, 4, 7, 10, 9} 
Output:
In the above array there are two steps required to make array decreasing – 
Step 1: In step 1 there are three elements which is greater than its left, which is 8 > 5, 7 > 4 and 10 > 7. 
Step 2: In step 2 there are three is only one element which is greater than its left which is 9 > 4. 

Naive Approach: Iterate over the array and count the elements which are greater than its left, if the element is not greater than its left then push the element into another array/vector (say arr1) and after the complete iteration of the array copy all the elements of arr1 to the initial array and repeat the same procedure until the count of elements removed in a step is 0. This approach takes O(N2) time in the worst case and O(N) space.

Code-

C++




// C++ implementation to make an
// array decreasing
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the
// minimum steps required
void minSteps(int arr[], int N)
{
    vector<int> arr1;
    int size = N;
 
    // For count of greater element
    int count;
 
    // For storing answer
    int ans = 0;
 
    while (true) {
        count = 0;
        arr1.push_back(arr[0]);
        for (int i = 1; i < size; i++) {
            // If elements is not greater than element on
            // its left then add that element into arr1
            if (arr[i] <= arr[i - 1]) {
                arr1.push_back(arr[i]);
            }
            // else increment the count because we got a
            // greater element
            else {
                count++;
            }
        }
 
        // If there is no greater element then out from the
        // outer loop
        if (count == 0) {
            break;
        }
 
        // Copy all the elements of arr1 to the initial
        // array
        size = arr1.size();
        for (int i = 0; i < size; i++) {
            arr[i] = arr1[i];
        }
        arr1.clear();
        ans++;
    }
 
    cout << ans << endl;
}
// Driver Code
int main()
{
    int arr[] = { 3, 2, 1, 7, 5 };
 
    int size = sizeof(arr) / sizeof(arr[0]);
 
    minSteps(arr, size);
 
    return 0;
}


Java




import java.util.ArrayList;
 
public class GFG {
    // Function to find the minimum steps required to make the array decreasing
    public static void minSteps(int[] arr) {
        ArrayList<Integer> arr1 = new ArrayList<>();
        int size = arr.length;
 
        // For count of greater element
        int count;
 
        // For storing answer
        int ans = 0;
 
        while (true) {
            count = 0;
            arr1.add(arr[0]);
            for (int i = 1; i < size; i++) {
                // If elements is not greater than the element on
               // its left,
                // then add that element into arr1
                if (arr[i] <= arr[i - 1]) {
                    arr1.add(arr[i]);
                }
                // else increment the count because we got a
               // greater element
                else {
                    count++;
                }
            }
 
            // If there is no greater element, then break out from
          // the outer loop
            if (count == 0) {
                break;
            }
 
            // Copy all the elements of arr1 to the initial array
            size = arr1.size();
            for (int i = 0; i < size; i++) {
                arr[i] = arr1.get(i);
            }
            arr1.clear();
            ans++;
        }
 
        System.out.println(ans);
    }
 
    // Driver code
    public static void main(String[] args) {
        int[] arr = { 3, 2, 1, 7, 5 };
        minSteps(arr);
    }
}


Python3




import sys
 
# Function to find minimum steps required
 
 
def minSteps(arr, N):
    arr1 = []
    size = N
 
    # For count of greater element
    count = 0
 
    # For storing answer
    ans = 0
 
    while True:
        count = 0
        arr1.append(arr[0])
        for i in range(1, size):
 
            # If elements is not greater than
            # element on its left then add
            # that element into arr1
            if arr[i] <= arr[i-1]:
                arr1.append(arr[i])
 
            # else increment the count
            # because we got a greater element
            else:
                count += 1
 
        # If there is no greater element
        # then out from the outer loop
        if count == 0:
            break
 
        # Copy all the elements of arr1
        # to the initial array
        size = len(arr1)
        for i in range(size):
            arr[i] = arr1[i]
        arr1.clear()
        ans += 1
 
    print(ans)
 
 
# Driver Code
if __name__ == '__main__':
    arr = [3, 2, 1, 7, 5]
 
    size = len(arr)
 
    minSteps(arr, size)


C#




using System;
 
public class GFG
{
    // Function to find the minimum steps required
    public static void MinSteps(int[] arr, int N)
    {
        var arr1 = new System.Collections.Generic.List<int>();
        int size = N;
 
        // For count of greater element
        int count;
 
        // For storing answer
        int ans = 0;
 
        while (true)
        {
            count = 0;
            arr1.Add(arr[0]);
            for (int i = 1; i < size; i++)
            {
                // If elements is not greater than element on its
               // left then add that element into arr1
                if (arr[i] <= arr[i - 1])
                {
                    arr1.Add(arr[i]);
                }
                // else increment the count because we got a greater element
                else
                {
                    count++;
                }
            }
 
            // If there is no greater element then break out from the
           // outer loop
            if (count == 0)
            {
                break;
            }
 
            // Copy all the elements of arr1 to the initial array
            size = arr1.Count;
            for (int i = 0; i < size; i++)
            {
                arr[i] = arr1[i];
            }
            arr1.Clear();
            ans++;
        }
 
        Console.WriteLine(ans);
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[] arr = { 3, 2, 1, 7, 5 };
        int size = arr.Length;
 
        MinSteps(arr, size);
    }
}


Javascript




// Function to find the
// minimum steps required
function minSteps(arr, N)
{
    let arr1 = [];
    let size = N;
 
    // For count of greater element
    let count;
 
    // For storing answer
    let ans = 0;
 
    while (true) {
        count = 0;
        arr1.push(arr[0]);
        for (let i = 1; i < size; i++) {
            // If elements is not greater than element on
            // its left then add that element into arr1
            if (arr[i] <= arr[i - 1]) {
                arr1.push(arr[i]);
            }
            // else increment the count because we got a
            // greater element
            else {
                count++;
            }
        }
 
        // If there is no greater element then out from the
        // outer loop
        if (count == 0) {
            break;
        }
 
        // Copy all the elements of arr1 to the initial
        // array
        size = arr1.length;
        for (let i = 0; i < size; i++) {
            arr[i] = arr1[i];
        }
        arr1 = [];
        ans++;
    }
 
    console.log(ans);
}
 
// Driver Code
let arr = [ 3, 2, 1, 7, 5 ];
 
let size = arr.length;
 
minSteps(arr, size);


Output

2



Time Complexity-O(N2)
Auxiliary Space-O(N)

Efficient Approach: The idea is to use a stack and push the element into the stack only if the element is greater than its previous element, else count the number of scans and pop. 
We only care about the elements which is smaller.

C++




// C++ implementation to make an
// array decreasing
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure to store elements
struct Node {
    int elementID;
    int stepsToeliminate;
};
 
// Function to find the
// minimum steps required
void minSteps(int arr[], int N)
{
    stack<Node> s;
 
    s.push({ 0, -1 });
 
    // Minimum steps
    int maxStepsToeliminate = -1;
 
    // Loop to iterate
    // over the array
    for (int i = 1; i < N; i++) {
        int stepsToeliminate = 1;
 
        // Traversing the stack until
        // it is not empty
        while (!s.empty()) {
            // Condition if the top of the
            // stack is greater than the
            // current element
            if (arr[s.top().elementID] >= arr[i]) {
                stepsToeliminate
                    = max(stepsToeliminate,
                          s.top().stepsToeliminate + 1);
                s.pop();
            }
            else {
                break;
            }
        }
 
        // Condition if no previous
        // elements value less than
        // this element then steps is -1
        if (s.empty()) {
            stepsToeliminate = -1;
        }
 
        maxStepsToeliminate
            = max(maxStepsToeliminate, stepsToeliminate);
        s.push({ i, stepsToeliminate });
    }
 
    cout << (maxStepsToeliminate < 0 ? 0
                                     : maxStepsToeliminate)
         << endl;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 2, 1, 7, 5 };
 
    int size = sizeof(arr) / sizeof(arr[0]);
 
    minSteps(arr, size);
 
    return 0;
}


Java




// Java implementation to make an
// array decreasing
import java.util.*;
 
class GFG {
 
    // Structure to store elements
    static class Node {
        int elementID;
        int stepsToeliminate;
        public Node(int elementID, int stepsToeliminate)
        {
            super();
            this.elementID = elementID;
            this.stepsToeliminate = stepsToeliminate;
        }
    };
 
    // Function to find the
    // minimum steps required
    static void minSteps(int arr[], int N)
    {
        Stack<Node> s = new Stack<Node>();
 
        s.add(new Node(0, -1));
 
        // Minimum steps
        int maxStepsToeliminate = -1;
 
        // Loop to iterate
        // over the array
        for (int i = 1; i < N; i++) {
            int stepsToeliminate = 1;
 
            // Traversing the stack until
            // it is not empty
            while (!s.isEmpty()) {
                // Condition if the top of the
                // stack is greater than the
                // current element
                if (arr[s.peek().elementID] >= arr[i]) {
                    stepsToeliminate = Math.max(
                        stepsToeliminate,
                        s.peek().stepsToeliminate + 1);
                    s.pop();
                }
                else {
                    break;
                }
            }
 
            // Condition if no previous
            // elements value less than
            // this element then steps is -1
            if (s.isEmpty()) {
                stepsToeliminate = -1;
            }
 
            maxStepsToeliminate = Math.max(
                maxStepsToeliminate, stepsToeliminate);
            s.add(new Node(i, stepsToeliminate));
        }
 
        System.out.print((maxStepsToeliminate < 0
                              ? 0
                              : maxStepsToeliminate)
                         + "\n");
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 3, 2, 1, 7, 5 };
 
        int size = arr.length;
 
        minSteps(arr, size);
    }
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 implementation to make an
# array decreasing
 
# Function to find the
# minimum steps required
 
 
def minSteps(arr,  N):
 
    s = []
 
    s.append((0, -1))
 
    # Minimum steps
    maxStepsToeliminate = -1
 
    # Loop to iterate
    # over the array
    for i in range(1, N):
 
        stepsToeliminate = 1
 
        # Traversing the stack until
        # it is not empty
        while (len(s) != 0):
 
            # Condition if the top of the
            # stack is greater than the
            # current element
            if (arr[s[-1][0]] >= arr[i]):
                stepsToeliminate = max(stepsToeliminate, s[-1][1] + 1)
                s.pop()
 
            else:
 
                break
 
        # Condition if no previous
        # elements value less than
        # this element then steps is -1
        if (len(s) == 0):
 
            stepsToeliminate = -1
 
        maxStepsToeliminate = max(maxStepsToeliminate, stepsToeliminate)
 
        s.append((i, stepsToeliminate))
 
    print(0 if (maxStepsToeliminate < 0) else maxStepsToeliminate)
 
 
# Driver Code
if __name__ == "__main__":
 
    arr = [3, 2, 1, 7, 5]
 
    size = len(arr)
 
    minSteps(arr, size)
 
# This code is contributed by AnkitRai01


C#




// C# implementation to make an
// array decreasing
using System;
using System.Collections.Generic;
 
class GFG {
 
    // Structure to store elements
    class Node {
        public int elementID;
        public int stepsToeliminate;
        public Node(int elementID, int stepsToeliminate)
        {
            this.elementID = elementID;
            this.stepsToeliminate = stepsToeliminate;
        }
    };
 
    // Function to find the
    // minimum steps required
    static void minSteps(int[] arr, int N)
    {
        Stack<Node> s = new Stack<Node>();
 
        s.Push(new Node(0, -1));
 
        // Minimum steps
        int maxStepsToeliminate = -1;
 
        // Loop to iterate
        // over the array
        for (int i = 1; i < N; i++) {
            int stepsToeliminate = 1;
 
            // Traversing the stack until
            // it is not empty
            while (s.Count != 0) {
                // Condition if the top of the
                // stack is greater than the
                // current element
                if (arr[s.Peek().elementID] >= arr[i]) {
                    stepsToeliminate = Math.Max(
                        stepsToeliminate,
                        s.Peek().stepsToeliminate + 1);
                    s.Pop();
                }
                else {
                    break;
                }
            }
 
            // Condition if no previous
            // elements value less than
            // this element then steps is -1
            if (s.Count != 0) {
                stepsToeliminate = -1;
            }
 
            maxStepsToeliminate = Math.Max(
                maxStepsToeliminate, stepsToeliminate);
            s.Push(new Node(i, stepsToeliminate));
        }
 
        Console.Write((maxStepsToeliminate < 0
                           ? 0
                           : maxStepsToeliminate)
                      + "\n");
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] arr = { 3, 2, 1, 7, 5 };
 
        int size = arr.Length;
 
        minSteps(arr, size);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
    // Javascript implementation to make an array decreasing
     
    // Structure to store elements
    class Node
    {
        constructor(elementID, stepsToeliminate) {
           this.elementID = elementID;
           this.stepsToeliminate = stepsToeliminate;
        }
    }
     
    // Function to find the
    // minimum steps required
    function minSteps(arr, N)
    {
        let s = [];
 
        s.push(new Node( 0, -1 ));
 
        // Minimum steps
        let maxStepsToeliminate = -1;
 
        // Loop to iterate
        // over the array
        for (let i = 1; i < N; i++)
        {
            let stepsToeliminate = 1;
 
            // Traversing the stack until
            // it is not empty
            while (s.length!=0)
            {
                // Condition if the top of the
                // stack is greater than the
                // current element
                if (arr[s[s.length - 1].elementID] >= arr[i])
                {
                    stepsToeliminate = Math.max(stepsToeliminate,
                               s[s.length - 1].stepsToeliminate + 1);
                    s.pop();
                }
                else
                {
                    break;
                }
            }
 
            // Condition if no previous
            // elements value less than
            // this element then steps is -1
            if (s.length!=0)
            {
                stepsToeliminate = -1;
            }
 
            maxStepsToeliminate = Math.max(maxStepsToeliminate, stepsToeliminate);
            s.push(new Node(i, stepsToeliminate ));
        }
 
        document.write((maxStepsToeliminate < 0 ? 0 :
                  maxStepsToeliminate) +"</br>");
    }
     
    let arr = [3, 2, 1, 7, 5];
         
    let size = arr.length;
         
    minSteps(arr, size);
     
    // This code is contributed by rameshtravel07.
</script>


Output

2



Performance Analysis: 

  • Time Complexity: As in the above approach, there is one loop which takes O(N) time, Hence the Time Complexity will be O(N).
  • Space Complexity: As in the above approach, there is stack used to store the previous elements, Hence the space complexity will be O(N).
     
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments