Wednesday, July 3, 2024
HomeData ModellingDynamic ProgrammingMinimum steps required to convert X to Y where a binary matrix...

Minimum steps required to convert X to Y where a binary matrix represents the possible conversions

Given a binary matrix of size NxN where 1 denotes that the number i can be converted to j, and 0 denotes it cannot be converted to. Also given are two numbers X(<N)and Y(<N), the task is to find the minimum number of steps required to convert the number X to Y. If there is no such way possible, print -1. 

Examples: 

Input: 
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
{ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}

X = 2, Y = 3 
Output: 2 
Convert 2 -> 4 -> 3, which is the minimum way possible. 

Input:
{{ 0, 0, 0, 0}
{ 0, 0, 0, 1}
{ 0, 0, 0, 0}
{ 0, 1, 0, 0}}

X = 1, Y = 2
Output: -1 

Approach: This problem is a variant of the Floyd-warshall algorithm where there is an edge of weight 1 between i and j i.e. mat[i][j]==1, else they don’t have an edge and we can assign edges as infinity as we do in Floyd-Warshall. Find the solution matrix and return dp[i][j] if it is not infinite. Return -1 if it is infinite which means there is no path possible between them. 

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
#define INF 99999
#define size 10
 
int findMinimumSteps(int mat[size][size], int x, int y, int n)
{
    // dist[][] will be the output matrix that
    // will finally have the shortest
    // distances between every pair of numbers
    int dist[n][n], i, j, k;
 
    // Initially same as mat
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            if (mat[i][j] == 0)
                dist[i][j] = INF;
            else
                dist[i][j] = 1;
 
            if (i == j)
                dist[i][j] = 1;
        }
    }
 
    // Add all numbers one by one to the set
    // of intermediate numbers. Before start of
    // an iteration, we have shortest distances
    // between all pairs of numbers such that the
    // shortest distances consider only the numbers
    // in set {0, 1, 2, .. k-1} as intermediate numbers.
    // After the end of an iteration, vertex no. k is
    // added to the set of intermediate numbers and
    // the set becomes {0, 1, 2, .. k}
    for (k = 0; k < n; k++) {
 
        // Pick all numbers as source one by one
        for (i = 0; i < n; i++) {
 
            // Pick all numbers as destination for the
            // above picked source
            for (j = 0; j < n; j++) {
 
                // If number k is on the shortest path from
                // i to j, then update the value of dist[i][j]
                if (dist[i][k] + dist[k][j] < dist[i][j])
                    dist[i][j] = dist[i][k] + dist[k][j];
            }
        }
    }
 
    // If no path
    if (dist[x][y] < INF)
        return dist[x][y];
    else
        return -1;
}
 
// Driver Code
int main()
{
 
    int mat[size][size] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
                            { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
                            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } };
 
    int x = 2, y = 3;
 
    cout << findMinimumSteps(mat, x, y, size);
}


Java




// Java implementation of the above approach
 
class GFG
{
     
    static int INF=99999;
     
    static int findMinimumSteps(int mat[][], int x, int y, int n)
    {
        // dist[][] will be the output matrix that
        // will finally have the shortest
        // distances between every pair of numbers
        int i, j, k;
        int [][] dist= new int[n][n];
     
        // Initially same as mat
        for (i = 0; i < n; i++) {
            for (j = 0; j < n; j++) {
                if (mat[i][j] == 0)
                    dist[i][j] = INF;
                else
                    dist[i][j] = 1;
     
                if (i == j)
                    dist[i][j] = 1;
            }
        }
     
        // Add all numbers one by one to the set
        // of intermediate numbers. Before start of
        // an iteration, we have shortest distances
        // between all pairs of numbers such that the
        // shortest distances consider only the numbers
        // in set {0, 1, 2, .. k-1} as intermediate numbers.
        // After the end of an iteration, vertex no. k is
        // added to the set of intermediate numbers and
        // the set becomes {0, 1, 2, .. k}
        for (k = 0; k < n; k++) {
     
            // Pick all numbers as source one by one
            for (i = 0; i < n; i++) {
     
                // Pick all numbers as destination for the
                // above picked source
                for (j = 0; j < n; j++) {
     
                    // If number k is on the shortest path from
                    // i to j, then update the value of dist[i][j]
                    if (dist[i][k] + dist[k][j] < dist[i][j])
                        dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
     
        // If no path
        if (dist[x][y] < INF)
            return dist[x][y];
        else
            return -1;
    }
     
    // Driver Code
    public static void main(String []args)
    {
     
        int [][] mat =  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
                        { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } };
     
        int x = 2, y = 3;
        int size=mat.length;
         
        System.out.println( findMinimumSteps(mat, x, y, size));
    }
 
}
 
 
// This code is contributed by ihritik


Python3




# Python3 implementation of the above approach
 
INF = 99999
size = 10
 
def findMinimumSteps(mat, x, y, n):
 
    # dist[][] will be the output matrix
    # that will finally have the shortest
    # distances between every pair of numbers
    dist = [[0 for i in range(n)]
               for i in range(n)]
    i, j, k = 0, 0, 0
 
    # Initially same as mat
    for i in range(n):
        for j in range(n):
            if (mat[i][j] == 0):
                dist[i][j] = INF
            else:
                dist[i][j] = 1
 
            if (i == j):
                dist[i][j] = 1
         
    # Add all numbers one by one to the set
    # of intermediate numbers. Before start
    # of an iteration, we have shortest distances
    # between all pairs of numbers such that the
    # shortest distances consider only the numbers
    # in set {0, 1, 2, .. k-1} as intermediate
    # numbers. After the end of an iteration, vertex
    # no. k is added to the set of intermediate
    # numbers and the set becomes {0, 1, 2, .. k}
    for k in range(n):
 
        # Pick all numbers as source one by one
        for i in range(n):
 
            # Pick all numbers as destination
            # for the above picked source
            for j in range(n):
 
                # If number k is on the shortest path from
                # i to j, then update the value of dist[i][j]
                if (dist[i][k] + dist[k][j] < dist[i][j]):
                    dist[i][j] = dist[i][k] + dist[k][j]
 
    # If no path
    if (dist[x][y] < INF):
        return dist[x][y]
    else:
        return -1
 
# Driver Code
mat = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ],
       [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
       [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]]
 
x, y = 2, 3
 
print(findMinimumSteps(mat, x, y, size))
 
# This code is contributed by Mohit kumar 29


C#




// C# implementation of the above approach
 
using System;
class GFG
{
     
    static int INF=99999;
     
    static int findMinimumSteps(int [,]mat, int x, int y, int n)
    {
        // dist[][] will be the output matrix that
        // will finally have the shortest
        // distances between every pair of numbers
        int i, j, k;
        int [,] dist= new int[n,n];
     
        // Initially same as mat
        for (i = 0; i < n; i++) {
            for (j = 0; j < n; j++) {
                if (mat[i,j] == 0)
                    dist[i,j] = INF;
                else
                    dist[i,j] = 1;
     
                if (i == j)
                    dist[i,j] = 1;
            }
        }
     
        // Add all numbers one by one to the set
        // of intermediate numbers. Before start of
        // an iteration, we have shortest distances
        // between all pairs of numbers such that the
        // shortest distances consider only the numbers
        // in set {0, 1, 2, .. k-1} as intermediate numbers.
        // After the end of an iteration, vertex no. k is
        // added to the set of intermediate numbers and
        // the set becomes {0, 1, 2, .. k}
        for (k = 0; k < n; k++) {
     
            // Pick all numbers as source one by one
            for (i = 0; i < n; i++) {
     
                // Pick all numbers as destination for the
                // above picked source
                for (j = 0; j < n; j++) {
     
                    // If number k is on the shortest path from
                    // i to j, then update the value of dist[i][j]
                    if (dist[i,k] + dist[k,j] < dist[i,j])
                        dist[i,j] = dist[i,k] + dist[k,j];
                }
            }
        }
     
        // If no path
        if (dist[x,y] < INF)
            return dist[x,y];
        else
            return -1;
    }
     
    // Driver Code
    public static void Main()
    {
     
        int [,] mat = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
                        { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 },
                        { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } };
     
        int x = 2, y = 3;
        int size = mat.GetLength(0) ;
         
        Console.WriteLine( findMinimumSteps(mat, x, y, size));
    }
    // This code is contributed by Ryuga
}


Javascript




<script>
 
// JavaScript implementation of the above approach  
    var INF=99999;
     
    function findMinimumSteps(mat , x , y , n)
    {
        // dist will be the output matrix that
        // will finally have the shortest
        // distances between every pair of numbers
        var i, j, k;
        var  dist= Array(n).fill().map(()=>Array(n).fill(0));
     
        // Initially same as mat
        for (i = 0; i < n; i++) {
            for (j = 0; j < n; j++) {
                if (mat[i][j] == 0)
                    dist[i][j] = INF;
                else
                    dist[i][j] = 1;
     
                if (i == j)
                    dist[i][j] = 1;
            }
        }
     
        // Add all numbers one by one to the set
        // of intermediate numbers. Before start of
        // an iteration, we have shortest distances
        // between all pairs of numbers such that the
        // shortest distances consider only the numbers
        // in set {0, 1, 2, .. k-1} as intermediate numbers.
        // After the end of an iteration, vertex no. k is
        // added to the set of intermediate numbers and
        // the set becomes {0, 1, 2, .. k}
        for (k = 0; k < n; k++) {
     
            // Pick all numbers as source one by one
            for (i = 0; i < n; i++) {
     
                // Pick all numbers as destination for the
                // above picked source
                for (j = 0; j < n; j++) {
     
                    // If number k is on the
                    // shortest path from
                    // i to j, then update the
                    // value of dist[i][j]
                    if (dist[i][k] + dist[k][j] < dist[i][j])
                        dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
     
        // If no path
        if (dist[x][y] < INF)
            return dist[x][y];
        else
            return -1;
    }
     
    // Driver Code
     
        var  mat =  [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
                        [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
                        [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
                        [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ],
                        [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ],
                        [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
                        [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
                        [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
                        [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
                        [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ];
     
        var x = 2, y = 3;
        var size=mat.length;
         
        document.write( findMinimumSteps(mat, x, y, size));
 
// This code contributed by Rajput-Ji
 
</script>


Output

2

Complexity Analysis:

  • Time Complexity: O(N3), as we are using nested loops to traverse N3 times.
  • Auxiliary Space: O(N2), as we are using extra space for the dist matrix.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha Wardslaus
Dominic Rubhabha Wardslaushttps://neveropen.dev
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments