Given N, print the sequence of a minimum number of steps in which N can be obtained starting from 0 using addition or subtraction of the step number.
Note: At each step, we can add or subtract a number equal to the step number from the current position. For example, at step 1 we can add 1 or -1. Similarly, at step 2 we add 2 or -2 and so on.
The below diagram shows all possible positions that can be reached from 0 in 3 steps by performing the specified operations.
Examples :
Input: n = -4 Output: Minimum number of Steps: 3 Step sequence: 1 -2 -3 Explanation: Step 1: At step 1 we add 1 to move from 0 to 1. Step 2: At step 2 we add (-2) to move from 1 to -1. Step 3: At step 3 we add (-3) to move from -1 to -4. Input: n = 11 Output: Minimum number of steps = 4 Step sequence: 1 -2 3 4 5
Approach: The approach to solve the above problem is to mark the step numbers where we have to subtract or add where if N is positive or negative respectively. If N is positive, add numbers at every step, until the sum exceeds N. Once the sum exceeds N, check if sum-N is even or not. If sum-N is even, then at step number (sum-N)/2, subtraction is to be done. If sum-N is an odd number, then check if the last step at which sum exceeded N was even or odd. If it was odd, perform one more step else perform two steps. If sum = N at any step, then addition or subtraction at every step will give the answer.
Let N = 11, then 1+2+3+4+5=15 exceeds 11. Subtract 15-11 to get 4, which is equivalent to performing subtraction at step 2. Hence the sequence of steps is 1 -2 3 4 5
Let N=12, then 1+2+3+4+5=15 exceeds 11. Subtract 15-12 to get 3, which cannot be performed at any step. So add two more steps, one is the 6th step and 7th step. The target is to make sum-N even, so perform addition at 6th step and subtraction at 7th step, which combines to subtract 1 from the sum. Now sum-N is even, 14-12=2 which is equivalent to performing subtraction at step 1. Hence the sequence of steps are -1 2 3 4 5 6 -7
Let N=20, then 1+2+3+4+5+6 exceeds 20. Subtract 21-20 to get 1, so add 7 to 21 to get 28. Performing addition at next step will do as (sum-n) is odd. sum-N gives 8 which is equivalent to performing subtraction at step 4. Hence the sequence of steps is 1 2 3 -4 5 6 7.
Below is the illustration of the above approach:
C++
// C++ program to print the sequence // of minimum steps in which N can be // obtained from 0 using addition or // subtraction of the step number. #include <bits/stdc++.h> using namespace std; // Function to return the vector // which stores the step sequence vector< int > findSteps( int n) { // Steps sequence vector< int > ans; // Current sum int sum = 0; // Sign of the number int sign = (n >= 0 ? 1 : -1); n = abs (n); int i; // Basic steps required to get sum >= required value. for (i = 1; sum < n; i++) { ans.push_back(sign * i); sum += i; } cout << i << endl; // Reached ahead of N if (sum > sign * n) { // If the last step was an odd number if (i % 2) { sum -= n; // sum-n is odd if (sum % 2) { ans.push_back(sign * i); sum += i++; } // subtract the equivalent sum-n ans[(sum / 2) - 1] *= -1; } else { sum -= n; // sum-n is odd if (sum % 2) { // since addition of next step and subtraction // at the next step will give sum = sum-1 sum--; ans.push_back(sign * i); ans.push_back(sign * -1 * (i + 1)); } // subtract the equivalent sum-n ans[(sum / 2) - 1] *= -1; } } // returns the vector return ans; } // Function to print the steps void printSteps( int n) { vector< int > v = findSteps(n); // prints the number of steps which is the size of vector cout << "Minimum number of Steps: " << v.size() << "\n" ; cout << "Step sequence:" ; // prints the steps stored // in the vector for ( int i = 0; i < v.size(); i++) cout << v[i] << " " ; } // Driver Code int main() { int n = 20; printSteps(n); return 0; } |
Java
// Java program to print the // sequence of minimum steps // in which N can be obtained // from 0 using addition or // subtraction of the step // number. import java.util.*; class GFG { // Function to return the // Arraylist which stores // the step sequence static ArrayList<Integer> findSteps( int n) { // Steps sequence ArrayList<Integer> ans = new ArrayList<Integer>(); // Current sum int sum = 0 ; // Sign of the number int sign = (n >= 0 ? 1 : - 1 ); n = Math.abs(n); int i; // Basic steps required to // get sum >= required value. for (i = 1 ; sum < n; i++) { ans.add(sign * i); sum += i; } System.out.println( i ); // Reached ahead of N if (sum > sign * n) { // If the last step // was an odd number if (i % 2 != 0 ) { sum -= n; // sum-n is odd if (sum % 2 != 0 ) { ans.add(sign * i); sum += i++; } // subtract the // equivalent sum-n ans.set((sum / 2 ) - 1 , ans.get((sum / 2 ) - 1 ) * - 1 ); } else { sum -= n; // sum-n is odd if (sum % 2 != 0 ) { // since addition of next // step and subtraction at // the next step will // give sum = sum-1 sum--; ans.add(sign * i); ans.add(sign * - 1 * (i + 1 )); } // subtract the // equivalent sum-n ans.set((sum / 2 ) - 1 , ans.get((sum / 2 ) - 1 ) * - 1 ); } } // returns the Arraylist return ans; } // Function to print the steps static void printSteps( int n) { ArrayList<Integer> v = findSteps(n); // prints the number of steps // which is the size of Arraylist System.out.println( "Minimum number " + "of Steps: " + v.size()); System.out.print( "Step sequence:" ); // prints the steps stored // in the Arraylist for ( int i = 0 ; i < v.size(); i++) System.out.print(v.get(i) + " " ); } // Driver Code public static void main(String args[]) { int n = 20 ; printSteps(n); } } // This code is contributed // by Arnab Kundu |
C#
// C# program to print the // sequence of minimum steps // in which N can be obtained // from 0 using addition or // subtraction of the step // number. using System; using System.Collections.Generic; class GFG { // Function to return the // Arraylist which stores // the step sequence static List< int > findSteps( int n) { // Steps sequence List< int > ans = new List< int >(); // Current sum int sum = 0; // Sign of the number int sign = (n >= 0 ? 1 : -1); n = Math.Abs(n); int i; // Basic steps required to // get sum >= required value. for (i = 1; sum < n; i++) { ans.Add(sign * i); sum += i; } Console.WriteLine( i ); // Reached ahead of N if (sum > sign * n) { // If the last step // was an odd number if (i % 2 != 0) { sum -= n; // sum-n is odd if (sum % 2 != 0) { ans.Add(sign * i); sum += i++; } // subtract the // equivalent sum-n ans[(sum / 2) - 1]= ans[(sum / 2) - 1] * -1; } else { sum -= n; // sum-n is odd if (sum % 2 != 0) { // since addition of next // step and subtraction at // the next step will // give sum = sum-1 sum--; ans.Add(sign * i); ans.Add(sign * -1 * (i + 1)); } // subtract the // equivalent sum-n ans[(sum / 2) - 1]= ans[(sum / 2) - 1] * -1; } } // returns the Arraylist return ans; } // Function to print the steps static void printSteps( int n) { List< int > v = findSteps(n); // prints the number of steps // which is the size of Arraylist Console.WriteLine( "Minimum number " + "of Steps: " + v.Count); Console.Write( "Step sequence:" ); // prints the steps stored // in the Arraylist for ( int i = 0; i < v.Count; i++) Console.Write(v[i] + " " ); } // Driver Code public static void Main(String []args) { int n = 20; printSteps(n); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program to print the sequence // of minimum steps in which N can be // obtained from 0 using addition or // subtraction of the step number. // Function to return the vector // which stores the step sequence function findSteps(n) { // Steps sequence var ans = []; // Current sum var sum = 0; // Sign of the number var sign = (n >= 0 ? 1 : -1); n = Math.abs(n); var i; // Basic steps required to get sum >= required value. for (i = 1; sum < n; i++) { ans.push(sign * i); sum += i; } document.write( i + "<br>" ); // Reached ahead of N if (sum > sign * n) { // If the last step was an odd number if (i % 2) { sum -= n; // sum-n is odd if (sum % 2) { ans.push(sign * i); sum += i++; } // subtract the equivalent sum-n ans[(sum / 2) - 1] *= -1; } else { sum -= n; // sum-n is odd if (sum % 2) { // since addition of next step and subtraction // at the next step will give sum = sum-1 sum--; ans.push(sign * i); ans.push(sign * -1 * (i + 1)); } // subtract the equivalent sum-n ans[(sum / 2) - 1] *= -1; } } // returns the vector return ans; } // Function to print the steps function printSteps(n) { var v = findSteps(n); // prints the number of steps which is the size of vector document.write( "Minimum number of Steps: " + v.length + "<br>" ); document.write( "Step sequence:" ); // prints the steps stored // in the vector for ( var i = 0; i < v.length; i++) document.write( v[i] + " " ); } // Driver Code var n = 20; printSteps(n); // This code is contributed by itsok. </script> |
Python3
# Python3 program to print the sequence # of minimum steps in which N can be # obtained from 0 using addition or # subtraction of the step number. # Function to return the # which stores the step sequence def findSteps( n): # Steps sequence ans = [] # Current sum sum = 0 # Sign of the number sign = 1 if n > = 0 else - 1 n = abs (n) i = 1 # Basic steps required to get sum >= required value. while sum <n : ans.append(sign * i) sum + = i i + = 1 print (i) # Reached ahead of N if ( sum > sign * n) : # If the last step was an odd number if (i % 2 ) : sum - = n # sum-n is odd if ( sum % 2 ) : ans.append(sign * i) sum + = i i + = 1 # subtract the equivalent sum-n ans[ int (( sum / 2 ) - 1 )] * = - 1 else : sum - = n # sum-n is odd if ( sum % 2 ) : # since addition of next step and subtraction # at the next step will give sum = sum-1 sum - = 1 ans.append(sign * i) ans.append(sign * - 1 * (i + 1 )) # subtract the equivalent sum-n ans[ int (( sum / 2 ) - 1 )] * = - 1 # returns the return ans # Function to pr the steps def prSteps(n): v = findSteps(n) # print the number of steps which is the size of print ( "Minimum number of Steps:" , len (v)) print ( "Step sequence:" ,end = "") # print the steps stored # in the for i in range ( len (v)): print (v[i],end = " " ) # Driver Code if __name__ = = '__main__' : n = 20 prSteps(n) |
7 Minimum number of Steps: 7 Step sequence:1 2 3 -4 5 6 7
Time Complexity : O(sqrt(N))
Auxiliary Space : O(sqrt(N))
Note: sum = i*(i+1)/2 is equivalent or greater than N, which gives i as sqrt(N).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!