Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMinimum steps in which N can be obtained using addition or subtraction...

Minimum steps in which N can be obtained using addition or subtraction at every step

Given N, print the sequence of a minimum number of steps in which N can be obtained starting from 0 using addition or subtraction of the step number.

Note: At each step, we can add or subtract a number equal to the step number from the current position. For example, at step 1 we can add 1 or -1. Similarly, at step 2 we add 2 or -2 and so on.

The below diagram shows all possible positions that can be reached from 0 in 3 steps by performing the specified operations.

Examples : 

Input: n = -4
Output: Minimum number of Steps: 3
        Step sequence: 1 -2 -3
Explanation: 
Step 1: At step 1 we add 1 to move from 0 to 1.
Step 2: At step 2 we add (-2) to move from 1 to -1.
Step 3: At step 3 we add (-3) to move from -1 to -4.

Input: n = 11
Output: Minimum number of steps = 4 
        Step sequence: 1 -2 3 4 5 

Approach: The approach to solve the above problem is to mark the step numbers where we have to subtract or add where if N is positive or negative respectively. If N is positive, add numbers at every step, until the sum exceeds N. Once the sum exceeds N, check if sum-N is even or not. If sum-N is even, then at step number (sum-N)/2, subtraction is to be done. If sum-N is an odd number, then check if the last step at which sum exceeded N was even or odd. If it was odd, perform one more step else perform two steps. If sum = N at any step, then addition or subtraction at every step will give the answer. 

Let N = 11, then 1+2+3+4+5=15 exceeds 11. Subtract 15-11 to get 4, which is equivalent to performing subtraction at step 2. Hence the sequence of steps is 1 -2 3 4 5 

Let N=12, then 1+2+3+4+5=15 exceeds 11. Subtract 15-12 to get 3, which cannot be performed at any step. So add two more steps, one is the 6th step and 7th step. The target is to make sum-N even, so perform addition at 6th step and subtraction at 7th step, which combines to subtract 1 from the sum. Now sum-N is even, 14-12=2 which is equivalent to performing subtraction at step 1. Hence the sequence of steps are -1 2 3 4 5 6 -7

Let N=20, then 1+2+3+4+5+6 exceeds 20. Subtract 21-20 to get 1, so add 7 to 21 to get 28. Performing addition at next step will do as (sum-n) is odd. sum-N gives 8 which is equivalent to performing subtraction at step 4. Hence the sequence of steps is 1 2 3 -4 5 6 7. 

Below is the illustration of the above approach:  

C++




// C++ program to print the sequence
// of minimum steps in which N can be
// obtained from 0 using addition or
// subtraction of the step number.
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the vector
// which stores the step sequence
vector<int> findSteps(int n)
{
    // Steps sequence
    vector<int> ans;
 
    // Current sum
    int sum = 0;
 
    // Sign of the number
    int sign = (n >= 0 ? 1 : -1);
    n = abs(n);
 
    int i;
    // Basic steps required to get sum >= required value.
    for (i = 1; sum < n; i++) {
        ans.push_back(sign * i);
        sum += i;
    }
    cout << i << endl;
 
    // Reached ahead of N
    if (sum > sign * n) {
 
        // If the last step was an odd number
        if (i % 2) {
            sum -= n;
 
            // sum-n is odd
            if (sum % 2) {
                ans.push_back(sign * i);
                sum += i++;
            }
            // subtract the equivalent sum-n
            ans[(sum / 2) - 1] *= -1;
        }
        else {
            sum -= n;
 
            // sum-n is odd
            if (sum % 2) {
 
                // since addition of next step and subtraction
                // at the next step will give sum = sum-1
                sum--;
                ans.push_back(sign * i);
                ans.push_back(sign * -1 * (i + 1));
            }
            // subtract the equivalent sum-n
            ans[(sum / 2) - 1] *= -1;
        }
    }
    // returns the vector
    return ans;
}
 
// Function to print the steps
void printSteps(int n)
{
    vector<int> v = findSteps(n);
 
    // prints the number of steps which is the size of vector
    cout << "Minimum number of Steps: " << v.size() << "\n";
 
    cout << "Step sequence:";
 
    // prints the steps stored
    // in the vector
    for (int i = 0; i < v.size(); i++)
        cout << v[i] << " ";
}
 
// Driver Code
int main()
{
    int n = 20;
    printSteps(n);
    return 0;
}


Java




// Java program to print the
// sequence of minimum steps
// in which N can be obtained
// from 0 using addition or
// subtraction of the step
// number.
import java.util.*;
 
class GFG
{
 
// Function to return the
// Arraylist which stores
// the step sequence
static ArrayList<Integer> findSteps(int n)
{
    // Steps sequence
    ArrayList<Integer> ans = new ArrayList<Integer>();
 
    // Current sum
    int sum = 0;
 
    // Sign of the number
    int sign = (n >= 0 ? 1 : -1);
    n = Math.abs(n);
 
    int i;
    // Basic steps required to
    // get sum >= required value.
    for (i = 1; sum < n; i++)
    {
        ans.add(sign * i);
        sum += i;
    }
    System.out.println( i );
 
    // Reached ahead of N
    if (sum > sign * n)
    {
 
        // If the last step
        // was an odd number
        if (i % 2 != 0)
        {
            sum -= n;
 
            // sum-n is odd
            if (sum % 2 != 0)
            {
                ans.add(sign * i);
                sum += i++;
            }
             
            // subtract the
            // equivalent sum-n
            ans.set((sum / 2) - 1,
            ans.get((sum / 2) - 1) * -1);
        }
        else
        {
            sum -= n;
 
            // sum-n is odd
            if (sum % 2 != 0)
            {
 
                // since addition of next
                // step and subtraction at
                // the next step will
                // give sum = sum-1
                sum--;
                ans.add(sign * i);
                ans.add(sign * -1 * (i + 1));
            }
             
            // subtract the
            // equivalent sum-n
            ans.set((sum / 2) - 1,
            ans.get((sum / 2) - 1) * -1);
        }
    }
     
    // returns the Arraylist
    return ans;
}
 
// Function to print the steps
static void printSteps(int n)
{
    ArrayList<Integer> v = findSteps(n);
 
    // prints the number of steps
    // which is the size of Arraylist
    System.out.println("Minimum number " +
                            "of Steps: " +
                                v.size());
 
    System.out.print("Step sequence:");
 
    // prints the steps stored
    // in the Arraylist
    for (int i = 0; i < v.size(); i++)
        System.out.print(v.get(i) + " ");
}
 
// Driver Code
public static void main(String args[])
{
    int n = 20;
    printSteps(n);
}
}
// This code is contributed
// by Arnab Kundu


C#




// C# program to print the
// sequence of minimum steps
// in which N can be obtained
// from 0 using addition or
// subtraction of the step
// number.
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to return the
// Arraylist which stores
// the step sequence
static List<int> findSteps(int n)
{
    // Steps sequence
    List<int> ans = new List<int>();
 
    // Current sum
    int sum = 0;
 
    // Sign of the number
    int sign = (n >= 0 ? 1 : -1);
    n = Math.Abs(n);
 
    int i;
     
    // Basic steps required to
    // get sum >= required value.
    for (i = 1; sum < n; i++)
    {
        ans.Add(sign * i);
        sum += i;
    }
    Console.WriteLine( i );
 
    // Reached ahead of N
    if (sum > sign * n)
    {
 
        // If the last step
        // was an odd number
        if (i % 2 != 0)
        {
            sum -= n;
 
            // sum-n is odd
            if (sum % 2 != 0)
            {
                ans.Add(sign * i);
                sum += i++;
            }
             
            // subtract the
            // equivalent sum-n
            ans[(sum / 2) - 1]=
            ans[(sum / 2) - 1] * -1;
        }
        else
        {
            sum -= n;
 
            // sum-n is odd
            if (sum % 2 != 0)
            {
 
                // since addition of next
                // step and subtraction at
                // the next step will
                // give sum = sum-1
                sum--;
                ans.Add(sign * i);
                ans.Add(sign * -1 * (i + 1));
            }
             
            // subtract the
            // equivalent sum-n
            ans[(sum / 2) - 1]=
            ans[(sum / 2) - 1] * -1;
        }
    }
     
    // returns the Arraylist
    return ans;
}
 
// Function to print the steps
static void printSteps(int n)
{
    List<int> v = findSteps(n);
 
    // prints the number of steps
    // which is the size of Arraylist
    Console.WriteLine("Minimum number " +
                            "of Steps: " +
                                v.Count);
 
    Console.Write("Step sequence:");
 
    // prints the steps stored
    // in the Arraylist
    for (int i = 0; i < v.Count; i++)
        Console.Write(v[i] + " ");
}
 
// Driver Code
public static void Main(String []args)
{
    int n = 20;
    printSteps(n);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program to print the sequence
// of minimum steps in which N can be
// obtained from 0 using addition or
// subtraction of the step number.
 
// Function to return the vector
// which stores the step sequence
function findSteps(n)
{
    // Steps sequence
    var ans = [];
 
    // Current sum
    var sum = 0;
 
    // Sign of the number
    var sign = (n >= 0 ? 1 : -1);
    n = Math.abs(n);
 
    var i;
    // Basic steps required to get sum >= required value.
    for (i = 1; sum < n; i++) {
        ans.push(sign * i);
        sum += i;
    }
    document.write( i + "<br>");
 
    // Reached ahead of N
    if (sum > sign * n) {
 
        // If the last step was an odd number
        if (i % 2) {
            sum -= n;
 
            // sum-n is odd
            if (sum % 2) {
                ans.push(sign * i);
                sum += i++;
            }
            // subtract the equivalent sum-n
            ans[(sum / 2) - 1] *= -1;
        }
        else {
            sum -= n;
 
            // sum-n is odd
            if (sum % 2) {
 
                // since addition of next step and subtraction
                // at the next step will give sum = sum-1
                sum--;
                ans.push(sign * i);
                ans.push(sign * -1 * (i + 1));
            }
            // subtract the equivalent sum-n
            ans[(sum / 2) - 1] *= -1;
        }
    }
    // returns the vector
    return ans;
}
 
// Function to print the steps
function printSteps(n)
{
    var v = findSteps(n);
 
    // prints the number of steps which is the size of vector
    document.write( "Minimum number of Steps: " + v.length + "<br>");
 
    document.write( "Step sequence:");
 
    // prints the steps stored
    // in the vector
    for (var i = 0; i < v.length; i++)
        document.write( v[i] + " ");
}
 
// Driver Code
var n = 20;
printSteps(n);
 
// This code is contributed by itsok.
</script>


Python3




# Python3  program to print  the sequence
# of minimum steps in which N can be
# obtained from 0 using addition or
# subtraction of the step number.
 
# Function to return the
# which stores the step sequence
def findSteps( n):
    # Steps sequence
    ans=[]
 
    # Current sum
    sum = 0
 
    # Sign of the number
    sign = 1 if n >= 0 else -1
    n = abs(n)
    i=1
    # Basic steps required to get sum >= required value.
    while sum<n :
        ans.append(sign * i)
        sum += i
        i+=1
     
    print(i)
 
    # Reached ahead of N
    if (sum > sign * n) :
 
        # If the last step was an odd number
        if (i % 2) :
            sum -= n
 
            # sum-n is odd
            if (sum % 2) :
                ans.append(sign * i)
                sum += i
                i+=1
             
            # subtract the equivalent sum-n
            ans[int((sum / 2) - 1)] *= -1
         
        else :
            sum -= n
 
            # sum-n is odd
            if (sum % 2) :
 
                # since addition of next step and subtraction
                # at the next step will give sum = sum-1
                sum-=1
                ans.append(sign * i)
                ans.append(sign * -1 * (i + 1))
             
            # subtract the equivalent sum-n
            ans[int((sum / 2) - 1)] *= -1
         
     
    # returns the
    return ans
 
 
# Function to pr the steps
def prSteps(n):
    v = findSteps(n)
 
    # print the number of steps which is the size of
    print("Minimum number of Steps:",len(v))
 
    print("Step sequence:",end="")
 
    # print the steps stored
    # in the
    for i in range(len(v)):
        print(v[i],end=" ")
 
 
# Driver Code
if __name__ == '__main__':
    n = 20
    prSteps(n)


Output : 

7
Minimum number of Steps: 7
Step sequence:1 2 3 -4 5 6 7

 

Time Complexity : O(sqrt(N)) 
Auxiliary Space : O(sqrt(N))
Note: sum = i*(i+1)/2 is equivalent or greater than N, which gives i as sqrt(N).
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments