Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMinimum size substring to be removed to make a given string palindromic

Minimum size substring to be removed to make a given string palindromic

Given a string S, the task is to print the string after removing the minimum size substring such that S is a palindrome or not.

Examples:

Input: S = “pqrstsuvwrqp”
Output: pqrstsrqp
Explanation:
Removal of the substring “uvw” modifies S to a palindromic string.

Input: S = “neveropenforskeeg”
Output: neveropenfskeeg
Explanation:
Removal of substring “or” modifies S to a palindromic string.

Approach: The idea is to include maximum size prefix and suffix from the given string S whose concatenation forms a palindrome. Then, choose the maximum length prefix or suffix from the remaining string which is a palindrome in itself. Below is the illustration of the approach with the help of an image:

Below is the implementation of the above approach:

C++




// C++ program of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find palindromic
// prefix of maximum length
string palindromePrefix(string S)
{
    int n = S.size();
 
    // Finding palindromic prefix of
    // maximum length
    for (int i = n - 1; i >= 0; i--) {
        string curr = S.substr(0, i + 1);
 
        // Checking if curr substring
        // is palindrome or not.
        int l = 0, r = curr.size() - 1;
        bool is_palindrome = 1;
 
        while (l < r) {
            if (curr[l] != curr[r]) {
                is_palindrome = 0;
                break;
            }
 
            l++;
            r--;
        }
 
        // Condition to check if the
        // prefix is a palindrome
        if (is_palindrome)
            return curr;
    }
 
    // if no palindrome exist
    return "";
}
 
// Function to find the maximum size
// palindrome such that after removing
// minimum size substring
string maxPalindrome(string S)
{
    int n = S.size();
    if (n <= 1) {
        return S;
    }
 
    string pre = "", suff = "";
 
    // Finding prefix and suffix
    // of same length
    int i = 0, j = n - 1;
    while (S[i] == S[j] && i < j) {
        i++;
        j--;
    }
    // Matching the ranges
    i--;
    j++;
 
    pre = S.substr(0, i + 1);
    suff = S.substr(j);
 
    // It is possible that the whole
    // string is palindrome.
 
    // Case 1: Length is even and
    // whole string is palindrome
    if (j - i == 1) {
        return pre + suff;
    }
 
    // Case 2: Length is odd and
    // whole string is palindrome
    if (j - i == 2) {
        // Adding that mid character
        string mid_char = S.substr(i + 1, 1);
 
        return pre + mid_char + suff;
    }
 
    // Add prefix or suffix of the remaining
    // string or suffix, whichever is longer
    string rem_str
        = S.substr(i + 1, j - i - 1);
 
    string pre_of_rem_str
        = palindromePrefix(rem_str);
 
    // Reverse the remaining string to
    // find the palindromic suffix
    reverse(rem_str.begin(), rem_str.end());
    string suff_of_rem_str
        = palindromePrefix(rem_str);
 
    if (pre_of_rem_str.size()
        >= suff_of_rem_str.size()) {
        return pre + pre_of_rem_str + suff;
    }
    else {
        return pre + suff_of_rem_str + suff;
    }
}
 
// Driver Code
int main()
{
    string S = "neveropenforskeeg";
    cout << maxPalindrome(S);
    return 0;
}


Java




// Java program of the
// above approach
import java.util.*;
 
class GFG{
 
// Function to find palindromic
// prefix of maximum length
static String palindromePrefix(String S)
{
    int n = S.length();
 
    // Finding palindromic prefix of
    // maximum length
    for(int i = n - 1; i >= 0; i--)
    {
        String curr = S.substring(0, i + 1);
 
        // Checking if curr subString
        // is palindrome or not.
        int l = 0, r = curr.length() - 1;
        boolean is_palindrome = true;
 
        while (l < r)
        {
            if (curr.charAt(l) != curr.charAt(r))
            {
                is_palindrome = false;
                break;
            }
            l++;
            r--;
        }
         
        // Condition to check if the
        // prefix is a palindrome
        if (is_palindrome)
            return curr;
    }
     
    // If no palindrome exist
    return "";
}
 
// Function to find the maximum size
// palindrome such that after removing
// minimum size subString
static String maxPalindrome(String S)
{
    int n = S.length();
    if (n <= 1)
    {
        return S;
    }
 
    String pre = "", suff = "";
 
    // Finding prefix and suffix
    // of same length
    int i = 0, j = n - 1;
    while (S.charAt(i) ==
           S.charAt(j) && i < j)
    {
        i++;
        j--;
    }
     
    // Matching the ranges
    i--;
    j++;
 
    pre = S.substring(0, i + 1);
    suff = S.substring(j);
 
    // It is possible that the whole
    // String is palindrome.
 
    // Case 1: Length is even and
    // whole String is palindrome
    if (j - i == 1)
    {
        return pre + suff;
    }
 
    // Case 2: Length is odd and
    // whole String is palindrome
    if (j - i == 2)
    {
         
        // Adding that mid character
        String mid_char = S.substring(i + 1,
                                      i + 2);
 
        return pre + mid_char + suff;
    }
 
    // Add prefix or suffix of the remaining
    // String or suffix, whichever is longer
    String rem_str = S.substring(i + 1, j);
 
    String pre_of_rem_str = palindromePrefix(rem_str);
 
    // Reverse the remaining String to
    // find the palindromic suffix
    rem_str = reverse(rem_str);
     
    String suff_of_rem_str = palindromePrefix(rem_str);
 
    if (pre_of_rem_str.length()    >=
       suff_of_rem_str.length())
    {
        return pre + pre_of_rem_str + suff;
    }
    else
    {
        return pre + suff_of_rem_str + suff;
    }
}
 
static String reverse(String input)
{
    char[] a = input.toCharArray();
    int l, r = a.length - 1;
     
    for(l = 0; l < r; l++, r--)
    {
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.valueOf(a);
}
 
// Driver Code
public static void main(String[] args)
{
    String S = "neveropenforskeeg";
     
    System.out.print(maxPalindrome(S));
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program of the
# above approach
 
# Function to find palindromic
# prefix of maximum length
def palindromePrefix(S):
 
    n = len(S)
 
    # Finding palindromic prefix
    # of maximum length
    for i in range(n - 1, -1, -1):
        curr = S[0 : i + 1]
 
        # Checking if curr substring
        # is palindrome or not.
        l = 0
        r = len(curr) - 1
        is_palindrome = 1
 
        while (l < r):
            if (curr[l] != curr[r]):
                is_palindrome = 0
                break
 
            l += 1
            r -= 1
 
        # Condition to check if the
        # prefix is a palindrome
        if (is_palindrome):
            return curr
 
    # if no palindrome exist
    return ""
 
# Function to find the maximum
# size palindrome such that
# after removing minimum size
# substring
def maxPalindrome(S):
 
    n = len(S)
    if (n <= 1):
        return S
 
    pre = ""
    suff = ""
 
    # Finding prefix and
    # suffix of same length
    i = 0
    j = n - 1
    while (S[i] == S[j] and
           i < j):
        i += 1
        j -= 1
 
    # Matching the ranges
    i -= 1
    j += 1
 
    pre = S[0 : i + 1]
    suff = S[j:]
 
    # It is possible that the
    # whole string is palindrome.
 
    # Case 1: Length is even and
    # whole string is palindrome
    if (j - i == 1):
        return pre + suff
 
    # Case 2: Length is odd and
    # whole string is palindrome
    if (j - i == 2):
       
        # Adding that mid character
        mid_char = S[i + 1 : i + 2]
 
        return pre + mid_char + suff
 
    # Add prefix or suffix of the
    # remaining string or suffix,
    # whichever is longer
    rem_str = S[i + 1 : j]
 
    pre_of_rem_str = palindromePrefix(rem_str)
 
    # Reverse the remaining string to
    # find the palindromic suffix
    list1 = list(rem_str)
 
    list1.reverse()
    rem_str = ''.join(list1)
    suff_of_rem_str = palindromePrefix(rem_str)
 
    if (len(pre_of_rem_str) >=
        len(suff_of_rem_str)):
        return (pre + pre_of_rem_str +
                suff)
    else:
        return (pre + suff_of_rem_str +
                suff)
       
# Driver Code
if __name__ == "__main__":
 
    S = "neveropenforskeeg"
    print(maxPalindrome(S))
 
# This code is contributed by Chitranayal


C#




// C# program of the
// above approach
using System;
class GFG{
 
// Function to find palindromic
// prefix of maximum length
static String palindromePrefix(String S)
{
  int n = S.Length;
 
  // Finding palindromic prefix of
  // maximum length
  for(int i = n - 1; i >= 0; i--)
  {
    String curr = S.Substring(0, i + 1);
 
    // Checking if curr subString
    // is palindrome or not.
    int l = 0, r = curr.Length - 1;
    bool is_palindrome = true;
 
    while (l < r)
    {
      if (curr[l] != curr[r])
      {
        is_palindrome = false;
        break;
      }
      l++;
      r--;
    }
 
    // Condition to check if the
    // prefix is a palindrome
    if (is_palindrome)
      return curr;
  }
 
  // If no palindrome exist
  return "";
}
 
// Function to find the maximum size
// palindrome such that after removing
// minimum size subString
static String maxPalindrome(String S)
{
  int n = S.Length;
  if (n <= 1)
  {
    return S;
  }
 
  String pre = "", suff = "";
 
  // Finding prefix and suffix
  // of same length
  int i = 0, j = n - 1;
  while (S[i] == S[j] && i < j)
  {
    i++;
    j--;
  }
 
  // Matching the ranges
  i--;
  j++;
 
  pre = S.Substring(0, i + 1);
  suff = S.Substring(j);
 
  // It is possible that the whole
  // String is palindrome.
 
  // Case 1: Length is even and
  // whole String is palindrome
  if (j - i == 1)
  {
    return pre + suff;
  }
 
  // Case 2: Length is odd and
  // whole String is palindrome
  if (j - i == 2)
  {
 
    // Adding that mid character
    String mid_char = S.Substring(i + 1,
                                  i + 2);
 
    return pre + mid_char + suff;
  }
 
  // Add prefix or suffix of the remaining
  // String or suffix, whichever is longer
  String rem_str = S.Substring(i + 1, j);
 
  String pre_of_rem_str = palindromePrefix(rem_str);
 
  // Reverse the remaining String to
  // find the palindromic suffix
  rem_str = reverse(rem_str);
 
  String suff_of_rem_str = palindromePrefix(rem_str);
 
  if (pre_of_rem_str.Length >=
      suff_of_rem_str.Length)
  {
    return pre + pre_of_rem_str + suff;
  }
  else
  {
    return pre + suff_of_rem_str + suff;
  }
}
 
static String reverse(String input)
{
  char[] a = input.ToCharArray();
  int l, r = a.Length - 1;
 
  for(l = 0; l < r; l++, r--)
  {
    char temp = a[l];
    a[l] = a[r];
    a[r] = temp;
  }
  return String.Join("", a);
}
 
// Driver Code
public static void Main(String[] args)
{
  String S = "neveropenforskeeg";
  Console.Write(maxPalindrome(S));
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
// javascript program for the
// above approach
 
// Function to find palindromic
// prefix of maximum length
function palindromePrefix(S)
{
    let n = S.length;
  
    // Finding palindromic prefix of
    // maximum length
    for(let i = n - 1; i >= 0; i--)
    {
        let curr = S.substr(0, i + 1);
  
        // Checking if curr subString
        // is palindrome or not.
        let l = 0, r = curr.length - 1;
        let is_palindrome = true;
  
        while (l < r)
        {
            if (curr[l] != curr[r])
            {
                is_palindrome = false;
                break;
            }
            l++;
            r--;
        }
          
        // Condition to check if the
        // prefix is a palindrome
        if (is_palindrome)
            return curr;
    }
      
    // If no palindrome exist
    return "";
}
  
// Function to find the maximum size
// palindrome such that after removing
// minimum size subString
function maxPalindrome(S)
{
    let n = S.length;
    if (n <= 1)
    {
        return S;
    }
  
    let pre = "", suff = "";
  
    // Finding prefix and suffix
    // of same length
    let i = 0, j = n - 1;
    while (S[i] ==
           S[j] && i < j)
    {
        i++;
        j--;
    }
      
    // Matching the ranges
    i--;
    j++;
  
    pre = S.substr(0, i + 1);
    suff = S.substr(j);
  
    // It is possible that the whole
    // String is palindrome.
  
    // Case 1: Length is even and
    // whole String is palindrome
    if (j - i == 1)
    {
        return pre + suff;
    }
  
    // Case 2: Length is odd and
    // whole String is palindrome
    if (j - i == 2)
    {
          
        // Adding that mid character
        let mid_char = S.substr(i + 1,
                                      i + 2);
  
        return pre + mid_char + suff;
    }
  
    // Add prefix or suffix of the remaining
    // String or suffix, whichever is longer
    let rem_str = S.substr(i + 1, j);
  
    let pre_of_rem_str = palindromePrefix(rem_str);
  
    // Reverse the remaining String to
    // find the palindromic suffix
    rem_str = reverse(rem_str);
      
    let suff_of_rem_str = palindromePrefix(rem_str);
  
    if (pre_of_rem_str.length  >=
       suff_of_rem_str.length)
    {
        return pre + pre_of_rem_str + suff;
    }
    else
    {
        return pre + suff_of_rem_str + suff;
    }
}
  
function reverse(input)
{
    let a = input.split('');
    let l, r = a.length - 1;
      
    for(l = 0; l < r; l++, r--)
    {
        let temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return parseInt(a);
}
  
// Driver Code
 
     let S = "neveropenforskeeg";
      
    document.write(maxPalindrome(S));
 
// This code is contributed by avijitmondal1998.
</script>


Output: 

neveropenfskeeg

Time Complexity: O(N2
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments