Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimum replacements with real numbers required to make given Array AP

Minimum replacements with real numbers required to make given Array AP

Given an array arr[] of N integers. The task is to convert the array into an Arithmetic Progression with the minimum number of replacements possible. In one replacement any one element can be replaced by any real number.

Examples:

Input: N = 6, arr[] = { 3, -2, 4, -1, -4, 0 }
Output: 3
Explanation: Change arr[0] = -2.5, arr[2] = -1.5, arr[4] = -0.5
So, the new sequence is AP { -2.5, -2, -1.5, -1, -0.5, 0} with 0.5 as the common difference.

Input: N = 5, arr[] = { 1, 0, 2, 4, 5}
Output: 2
Explanation: Change arr[1] = 2, arr[2] = 3
So, the new sequence is { 1, 2, 3, 4, 5 } which is an AP.

 

Approach: The solution of the problem is based on finding the all common differences possible from the array. Follow the steps mentioned below:

  • Run a nested loop to find all the possible common differences from the array where only two elements are forming and AP and store them in a map.
  • Now for each common difference, traverse the array and find out the total number of values lying in the AP with that specific difference.
  • The remaining number of values needs to be changed.
  • The minimum among these remaining values is the required answer.

Below is the implementation of the above approach:

C++




// C++ program to find the minimum number
// of changes required to make the given
// array an AP
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number
// of changes required to make the given
// array an AP
int minChanges(int arr[], int N)
{
    if (N <= 2) {
        return 0;
    }
 
    int ans = INT_MAX;
 
    for (int i = 0; i < N; i++) {
 
        // Map to store number of points
        // that lie on the Ap
        // with key as the common difference
        unordered_map<double, int> points;
 
        for (int j = 0; j < N; j++) {
            if (i == j)
                continue;
 
            // Calculating the common difference
            // for the AP with arr[i] and arr[j]
            double slope
                = (double)(arr[j] - arr[i]) / (j - i);
            points[slope]++;
        }
 
        int max_points = INT_MIN;
 
        // Finding maximum number of values
        // that lie on the Ap
        for (auto point : points) {
            max_points = max(max_points,
                             point.second);
        }
        max_points++;
        ans = min(ans, N - max_points);
    }
    return ans;
}
 
// Driver code
int main()
{
    int N = 6;
    int arr[] = { 3, -2, 4, -1, -4, 0 };
 
    // Function call
    cout << minChanges(arr, N);
    return 0;
}


Java




// JAVA program to find the minimum number
// of changes required to make the given
// array an AP
import java.util.*;
class GFG
{
 
  // Function to find the minimum number
  // of changes required to make the given
  // array an AP
  public static int minChanges(int[] arr, int N)
  {
    if (N <= 2) {
      return 0;
    }
 
    int ans = Integer.MAX_VALUE;
 
    for (int i = 0; i < N; i++) {
 
      // Map to store number of points
      // that lie on the Ap
      // with key as the common difference
      HashMap<Double, Integer> points
        = new HashMap<>();
 
      for (int j = 0; j < N; j++) {
        if (i == j)
          continue;
 
        // Calculating the common difference
        // for the AP with arr[i] and arr[j]
        double slope
          = (double)(arr[j] - arr[i]) / (j - i);
        if (points.containsKey(slope)) {
          points.put(slope,
                     points.get(slope) + 1);
        }
        else {
          points.put(slope, 1);
        }
      }
 
      int max_points = Integer.MIN_VALUE;
 
      // Finding maximum number of values
      // that lie on the Ap
      for (Map.Entry<Double, Integer> mp :
           points.entrySet()) {
        max_points
          = Math.max(max_points, mp.getValue());
      }
      max_points++;
      ans = Math.min(ans, N - max_points);
    }
    return ans;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N = 6;
    int[] arr = new int[] { 3, -2, 4, -1, -4, 0 };
 
    // Function call
    System.out.print(minChanges(arr, N));
  }
}
 
// This code is contributed by Taranpreet


Python3




# Python3 program to find the minimum number
# of changes required to make the given array an AP.
def minChanges(arr, n):
    if n <= 2:
        return 0
    ans = float('inf')
    for i in range(n):
       
        # Map to store number of points
        # that lie on the Ap
        # with key as the common difference
        points = {}
        for j in range(n):
            if i == j:
                continue
                 
            # Calculating the common difference
            # for the AP with arr[i] and arr[j] double slope
            slope = (arr[j] - arr[i])//(j - i)
            if slope in points:
                points[slope] += 1
            else:
                points[slope] = 1
    max_points = float('-inf')
     
    # Finding maximum number of values
    # that lie on the Ap
    for point in points:
        max_points = max(max_points, points[point])
    max_points += 1
    ans = min(ans, n-max_points)
    return ans
   
# Driver code
n = 6
arr = [3, -2, 4, -1, -4, 0]
print(minChanges(arr, n))
'''This code is written by Rajat Kumar (GLA University)'''


C#




// C# program to find the minimum number
// of changes required to make the given
// array an AP
using System;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to find the minimum number
  // of changes required to make the given
  // array an AP
  static int minChanges(int[] arr, int N)
  {
    if (N <= 2) {
      return 0;
    }
 
    int ans = Int32.MaxValue;
 
    for (int i = 0; i < N; i++) {
 
      // Map to store number of points
      // that lie on the Ap
      // with key as the common difference
      Dictionary<double, int> points
        = new Dictionary<double, int>();
 
      for (int j = 0; j < N; j++) {
        if (i == j)
          continue;
 
        // Calculating the common difference
        // for the AP with arr[i] and arr[j]
        double slope
          = (double)(arr[j] - arr[i]) / (j - i);
        if (!points.ContainsKey(slope)) {
          points.Add(slope, 1);
        }
        else {
          points[slope] = points[slope] + 1;
        }
      }
 
      int max_points = Int32.MinValue;
 
      // Finding maximum number of values
      // that lie on the Ap
      foreach(
        KeyValuePair<double, int> point in points)
      {
        max_points
          = Math.Max(max_points, point.Value);
      }
      max_points++;
      ans = Math.Min(ans, N - max_points);
    }
    return ans;
  }
 
  // Driver code
  public static void Main()
  {
    int N = 6;
    int[] arr = { 3, -2, 4, -1, -4, 0 };
 
    // Function call
    Console.Write(minChanges(arr, N));
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find the minimum number
       // of changes required to make the given
       // array an AP
       function minChanges(arr, N)
       {
           if (N <= 2)
           {
               return 0;
           }
 
           let ans = Number.MAX_VALUE;
 
           for (let i = 0; i < N; i++) {
 
               // Map to store number of points
               // that lie on the Ap
               // with key as the common difference
               let points = new Map();
 
               for (let j = 0; j < N; j++) {
                   if (i == j)
                       continue;
 
                   // Calculating the common difference
                   // for the AP with arr[i] and arr[j]
                   let slope
                       = (arr[j] - arr[i]) / (j - i);
                   if (!points.has(slope))
                       points.set(slope, 1);
                   else {
                       points.set(slope, points.get(slope) + 1)
                   }
               }
 
               let max_points = Number.MIN_VALUE;
 
               // Finding maximum number of values
               // that lie on the Ap
               for (let [key, val] of points) {
                   max_points = Math.max(max_points,
                       val);
               }
               max_points++;
               ans = Math.min(ans, N - max_points);
           }
           return ans;
       }
 
       // Driver code
       let N = 6;
       let arr = [3, -2, 4, -1, -4, 0];
 
       // Function call
       document.write(minChanges(arr, N));
 
      // This code is contributed by Potta Lokesh
   </script>


 
 

Output

3

 

Time Complexity: O(N2)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
30 Mar, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments