Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum repeated addition of even divisors of N required to convert N...

Minimum repeated addition of even divisors of N required to convert N to M

Given two numbers N and M, the task is to find the minimum operations required to convert N to M by repeatedly adding it with all even divisors of N except N. Print -1 if the conversion is not possible.

Examples:

Input: N = 6, M = 24
Output: 4
Explanation:
Step1: Add 2 (2 is an even divisor and 2!= 6) to 6. Now N becomes 8.
Step2: Add 4 (4 is an even divisor and 4!= 8) to 8. Now N becomes 12.
Step3: Add 6 (6 is an even divisor and 6!=12) to 12. Now N becomes 18.
Step4: Add 6 (6 is an even divisor and 6!=18) to 18. Now N becomes 24 = M.
Hence, 4 steps are needed.

Input: N = 9, M = 17
Output: -1
Explanation:
There are no even divisors for 9 to add, so we cannot convert N to M.

Naive Approach: The simplest solution is to consider all possible even divisors of a number and calculate the answer for them recursively and finally return the minimum of it.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// INF is the maximum value
// which indicates Impossible state
const int INF = 1e7;
 
// Recursive Function that considers
// all possible even divisors of cur
int min_op(int cur, int M)
{
    // Indicates impossible state
    if (cur > M)
        return INF;
 
    // Return 0 if cur == M
    if (cur == M)
        return 0;
 
    // op stores the minimum operations
    // required to transform cur to M
 
    // Initially it is set to INF that
    // means we can't transform cur to M
    int op = INF;
 
    // Loop to find even divisors of cur
    for (int i = 2; i * i <= cur; i++) {
 
        // if i is divisor of cur
        if (cur % i == 0) {
 
            // if i is even
            if (i % 2 == 0) {
 
                // Finding divisors
                // recursively for cur+i
                op = min(op,
                         1 + min_op(cur + i, M));
            }
 
            // Check another divisor
            if ((cur / i) != i
                && (cur / i) % 2 == 0) {
 
                // Find recursively
                // for cur+(cur/i)
                op = min(
                    op,
                    1 + min_op(
                            cur + (cur / i),
                            M));
            }
        }
    }
 
    // Return the answer
    return op;
}
 
// Function that finds the minimum
// operation to reduce N to M
int min_operations(int N, int M)
{
    int op = min_op(N, M);
 
    // INF indicates impossible state
    if (op >= INF)
        cout << "-1";
    else
        cout << op << "\n";
}
 
// Driver Code
int main()
{
    // Given N and M
    int N = 6, M = 24;
 
    // Function Call
    min_operations(N, M);
 
    return 0;
}


Java




// Java program for the above approach
class GFG{
 
// INF is the maximum value
// which indicates Impossible state
static int INF = (int) 1e7;
 
// Recursive Function that considers
// all possible even divisors of cur
static int min_op(int cur, int M)
{
    // Indicates impossible state
    if (cur > M)
        return INF;
 
    // Return 0 if cur == M
    if (cur == M)
        return 0;
 
    // op stores the minimum operations
    // required to transform cur to M
 
    // Initially it is set to INF that
    // means we can't transform cur to M
    int op = INF;
 
    // Loop to find even divisors of cur
    for (int i = 2; i * i <= cur; i++)
    {
 
        // if i is divisor of cur
        if (cur % i == 0)
        {
 
            // if i is even
            if (i % 2 == 0)
            {
 
                // Finding divisors
                // recursively for cur+i
                op = Math.min(op, 1 + min_op(cur + i, M));
            }
 
            // Check another divisor
            if ((cur / i) != i && (cur / i) % 2 == 0)
            {
 
                // Find recursively
                // for cur+(cur/i)
                op = Math.min(op, 1 + min_op(
                                cur + (cur / i), M));
            }
        }
    }
 
    // Return the answer
    return op;
}
 
// Function that finds the minimum
// operation to reduce N to M
static void min_operations(int N, int M)
{
    int op = min_op(N, M);
 
    // INF indicates impossible state
    if (op >= INF)
        System.out.print("-1");
    else
        System.out.print(op + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
    // Given N and M
    int N = 6, M = 24;
 
    // Function Call
    min_operations(N, M);
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program for the above approach
 
# INF is the maximum value
# which indicates Impossible state
INF = int(1e7);
 
# Recursive Function that considers
# all possible even divisors of cur
def min_op(cur, M):
     
    # Indicates impossible state
    if (cur > M):
        return INF;
 
    # Return 0 if cur == M
    if (cur == M):
        return 0;
 
    # op stores the minimum operations
    # required to transform cur to M
 
    # Initially it is set to INF that
    # means we can't transform cur to M
    op = int(INF);
 
    # Loop to find even divisors of cur
    for i in range(2, int(cur ** 1 / 2) + 1):
 
        # If i is divisor of cur
        if (cur % i == 0):
 
            # If i is even
            if (i % 2 == 0):
                 
                # Finding divisors
                # recursively for cur+i
                op = min(op, 1 + min_op(cur + i, M));
 
            # Check another divisor
            if ((cur / i) != i and
                (cur / i) % 2 == 0):
                 
                # Find recursively
                # for cur+(cur/i)
                op = min(op, 1 + min_op(
                           cur + (cur // i), M));
 
    # Return the answer
    return op;
 
# Function that finds the minimum
# operation to reduce N to M
def min_operations(N, M):
     
    op = min_op(N, M);
 
    # INF indicates impossible state
    if (op >= INF):
        print("-1");
    else:
        print(op);
 
# Driver Code
if __name__ == '__main__':
     
    # Given N and M
    N = 6;
    M = 24;
 
    # Function call
    min_operations(N, M);
 
# This code is contributed by Amit Katiyar


C#




// C# program for the above approach
using System;
class GFG {
 
    // INF is the maximum value
    // which indicates Impossible state
    static int INF = (int)1e7;
 
    // Recursive Function that considers
    // all possible even divisors of cur
    static int min_op(int cur, int M)
    {
        // Indicates impossible state
        if (cur > M)
            return INF;
 
        // Return 0 if cur == M
        if (cur == M)
            return 0;
 
        // op stores the minimum operations
        // required to transform cur to M
 
        // Initially it is set to INF that
        // means we can't transform cur to M
        int op = INF;
 
        // Loop to find even divisors of cur
        for (int i = 2; i * i <= cur; i++)
        {
 
            // if i is divisor of cur
            if (cur % i == 0)
            {
 
                // if i is even
                if (i % 2 == 0)
                {
 
                    // Finding divisors
                    // recursively for cur+i
                    op = Math.Min(op,1 +
                                  min_op(cur + i, M));
                }
 
                // Check another divisor
                if ((cur / i) != i && (cur / i) % 2 == 0)
                {
 
                    // Find recursively
                    // for cur+(cur/i)
                    op = Math.Min(op, 1 +
                                  min_op(cur +
                                         (cur / i), M));
                }
            }
        }
 
        // Return the answer
        return op;
    }
 
    // Function that finds the minimum
    // operation to reduce N to M
    static void min_operations(int N, int M)
    {
        int op = min_op(N, M);
 
        // INF indicates impossible state
        if (op >= INF)
            Console.Write("-1");
        else
            Console.Write(op + "\n");
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        // Given N and M
        int N = 6, M = 24;
 
        // Function Call
        min_operations(N, M);
    }
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// Javascript program to implement
// the above approach
     
// INF is the maximum value
// which indicates Impossible state
let INF = 1e7;
  
// Recursive Function that considers
// all possible even divisors of cur
function min_op(cur, M)
{
    // Indicates impossible state
    if (cur > M)
        return INF;
  
    // Return 0 if cur == M
    if (cur == M)
        return 0;
  
    // op stores the minimum operations
    // required to transform cur to M
  
    // Initially it is set to INF that
    // means we can't transform cur to M
    let op = INF;
  
    // Loop to find even divisors of cur
    for (let i = 2; i * i <= cur; i++)
    {
  
        // if i is divisor of cur
        if (cur % i == 0)
        {
  
            // if i is even
            if (i % 2 == 0)
            {
  
                // Finding divisors
                // recursively for cur+i
                op = Math.min(op, 1 + min_op(cur + i, M));
            }
  
            // Check another divisor
            if ((cur / i) != i && (cur / i) % 2 == 0)
            {
  
                // Find recursively
                // for cur+(cur/i)
                op = Math.min(op, 1 + min_op(
                                cur + (cur / i), M));
            }
        }
    }
  
    // Return the answer
    return op;
}
  
// Function that finds the minimum
// operation to reduce N to M
function min_operations(N, M)
{
    let op = min_op(N, M);
  
    // INF indicates impossible state
    if (op >= INF)
        document.write("-1");
    else
       document.write(op + "\n");
}
 
// Driver Code
 
         // Given N and M
    let N = 6, M = 24;
  
    // Function Call
    min_operations(N, M);
     
</script>


Output

4

Time Complexity: O(2N)
Auxiliary Space: O(1) 

Efficient Approach: The idea is to use Dynamic Programming and store the overlapping subproblems state in the naive approach to calculate the answer efficiently. Follow the below steps to solve the problem: 

  1. Initialize a dp table dp[i] = -1 for all N?i?M.
  2. Consider all possible even divisors of a number and find the minimum from all of it.
  3. Finally, store the result in dp[] and return the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// INF is the maximum value
// which indicates Impossible state
const int INF = 1e7;
const int max_size = 100007;
 
// Stores the dp states
int dp[max_size];
 
// Recursive Function that considers
// all possible even divisors of cur
int min_op(int cur, int M)
{
    // Indicates impossible state
    if (cur > M)
        return INF;
 
    if (cur == M)
        return 0;
 
    // Check dp[cur] is already
    // calculated or not
    if (dp[cur] != -1)
        return dp[cur];
 
    // op stores the minimum operations
    // required to transform cur to M
 
    // Initially it is set to INF that
    // meanswe cur can't be transform to M
    int op = INF;
 
    // Loop to find even divisors of cur
    for (int i = 2; i * i <= cur; i++) {
 
        // if i is divisor of cur
        if (cur % i == 0) {
 
            // if i is even
            if (i % 2 == 0) {
 
                // Find recursively
                // for cur+i
                op = min(op, 1 + min_op(cur + i, M));
            }
 
            // Check another divisor
            if ((cur / i) != i && (cur / i) % 2 == 0) {
 
                // Find recursively
                // for cur+(cur/i)
                op = min(op,
                         1 + min_op(cur + (cur / i), M));
            }
        }
    }
 
    // Finally store the current state
    // result and return the answer
    return dp[cur] = op;
}
 
// Function that counts the minimum
// operation to reduce N to M
int min_operations(int N, int M)
{
    // Initialise dp state
    for (int i = N; i <= M; i++) {
        dp[i] = -1;
    }
 
    // Function Call
    return min_op(N, M);
}
 
// Driver Code
int main()
{
    // Given N and M
    int N = 6, M = 24;
 
    // Function Call
    int op = min_operations(N, M);
 
    // INF indicates impossible state
    if (op >= INF)
        cout << "-1";
    else
        cout << op << "\n";
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// INF is the maximum value
// which indicates Impossible state
static int INF = (int) 1e7;
static int max_size = 100007;
 
// Stores the dp states
static int []dp = new int[max_size];
 
// Recursive Function that considers
// all possible even divisors of cur
static int min_op(int cur, int M)
{
     
    // Indicates impossible state
    if (cur > M)
        return INF;
 
    if (cur == M)
        return 0;
                 
    // Check dp[cur] is already
    // calculated or not
    if (dp[cur] != -1)
        return dp[cur];
 
    // op stores the minimum operations
    // required to transform cur to M
 
    // Initially it is set to INF that
    // meanswe cur can't be transform to M
    int op = INF;
 
    // Loop to find even divisors of cur
    for(int i = 2; i * i <= cur; i++)
    {
         
        // If i is divisor of cur
        if (cur % i == 0)
        {
             
            // If i is even
            if (i % 2 == 0)
            {
                 
                // Find recursively
                // for cur+i
                op = Math.min(op,
                     1 + min_op(cur + i, M));
            }
 
            // Check another divisor
            if ((cur / i) != i &&
                (cur / i) % 2 == 0)
            {
 
                // Find recursively
                // for cur+(cur/i)
                op = Math.min(op,
                     1 + min_op(cur + (cur / i), M));
            }
        }
    }
 
    // Finally store the current state
    // result and return the answer
    return dp[cur] = op;
}
 
// Function that counts the minimum
// operation to reduce N to M
static int min_operations(int N, int M)
{
     
    // Initialise dp state
    for(int i = N; i <= M; i++)
    {
        dp[i] = -1;
    }
 
    // Function call
    return min_op(N, M);
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given N and M
    int N = 6, M = 24;
 
    // Function call
    int op = min_operations(N, M);
 
    // INF indicates impossible state
    if (op >= INF)
        System.out.print("-1");
    else
        System.out.print(op + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the
# above approach
  
# INF is the maximum value
# which indicates Impossible state
INF = 10000007;
max_size = 100007;
  
# Stores the dp states
dp = [0 for i in range(max_size)];
  
# Recursive Function
# that considers all
# possible even divisors
# of cur
def min_op(cur, M):
 
    # Indicates impossible
    # state
    if (cur > M):
        return INF;
  
    if (cur == M):
        return 0;
  
    # Check dp[cur] is already
    # calculated or not
    if (dp[cur] != -1):
        return dp[cur];
  
    # op stores the minimum
    # operations required to
    # transform cur to M
  
    # Initially it is set
    # to INF that meanswe cur
    # can't be transform to M
    op = INF;
  
    i = 2
     
    # Loop to find even
    # divisors of cur
    while(i * i <= cur):
  
        # if i is divisor of cur
        if (cur % i == 0):
  
            # if i is even
            if(i % 2 == 0):
  
                # Find recursively
                # for cur+i
                op = min(op, 1 + min_op(cur +
                                        i, M));           
  
            # Check another divisor
            if ((cur // i) != i and
                (cur // i) % 2 == 0):
  
                # Find recursively
                # for cur+(cur/i)
                op = min(op, 1 + min_op(cur +
                        (cur // i), M))
         
        i += 1    
  
    # Finally store the current state
    # result and return the answer
    dp[cur] = op;
    return op
  
# Function that counts the minimum
# operation to reduce N to M
def min_operations(N, M):
     
    # Initialise dp state
    for i in range(N, M + 1):
        dp[i] = -1;
  
    # Function Call
    return min_op(N, M);
 
# Driver code
if __name__ == "__main__":
     
    # Given N and M
    N = 6
    M = 24
  
    # Function Call
    op = min_operations(N, M);
  
    # INF indicates impossible state
    if (op >= INF):
        print(-1)
    else:
        print(op)
 
# This code is contributed by rutvik_56


C#




// C# program for the above approach
using System;
class GFG{
 
// INF is the maximum value
// which indicates Impossible state
static int INF = (int) 1e7;
static int max_size = 100007;
 
// Stores the dp states
static int []dp = new int[max_size];
 
// Recursive Function that considers
// all possible even divisors of cur
static int min_op(int cur, int M)
{
     
    // Indicates impossible state
    if (cur > M)
        return INF;
 
    if (cur == M)
        return 0;
                 
    // Check dp[cur] is already
    // calculated or not
    if (dp[cur] != -1)
        return dp[cur];
 
    // op stores the minimum operations
    // required to transform cur to M
 
    // Initially it is set to INF that
    // meanswe cur can't be transform to M
    int op = INF;
 
    // Loop to find even divisors of cur
    for(int i = 2; i * i <= cur; i++)
    {       
        // If i is divisor of cur
        if (cur % i == 0)
        {           
            // If i is even
            if (i % 2 == 0)
            {               
                // Find recursively
                // for cur+i
                op = Math.Min(op, 1 +
                              min_op(cur + i, M));
            }
 
            // Check another divisor
            if ((cur / i) != i &&
                (cur / i) % 2 == 0)
            {
                // Find recursively
                // for cur+(cur/i)
                op = Math.Min(op, 1 +
                              min_op(cur +
                                     (cur / i), M));
            }
        }
    }
 
    // Finally store the current state
    // result and return the answer
    return dp[cur] = op;
}
 
// Function that counts the minimum
// operation to reduce N to M
static int min_operations(int N,
                          int M)
{   
    // Initialise dp state
    for(int i = N; i <= M; i++)
    {
        dp[i] = -1;
    }
 
    // Function call
    return min_op(N, M);
}
 
// Driver Code
public static void Main(String[] args)
{   
    // Given N and M
    int N = 6, M = 24;
 
    // Function call
    int op = min_operations(N, M);
 
    // INF indicates impossible state
    if (op >= INF)
        Console.Write("-1");
    else
        Console.Write(op + "\n");
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program for the above approach
 
// INF is the maximum value
// which indicates Impossible state
var INF = 10000000;
var max_size = 100007;
 
// Stores the dp states
var dp = Array(max_size);
 
// Recursive Function that considers
// all possible even divisors of cur
function min_op( cur, M)
{
    // Indicates impossible state
    if (cur > M)
        return INF;
 
    if (cur == M)
        return 0;
 
    // Check dp[cur] is already
    // calculated or not
    if (dp[cur] != -1)
        return dp[cur];
 
    // op stores the minimum operations
    // required to transform cur to M
 
    // Initially it is set to INF that
    // meanswe cur can't be transform to M
    var op = INF;
 
    // Loop to find even divisors of cur
    for (var i = 2; i * i <= cur; i++) {
 
        // if i is divisor of cur
        if (cur % i == 0) {
 
            // if i is even
            if (i % 2 == 0) {
 
                // Find recursively
                // for cur+i
                op = Math.min(op, 1 + min_op(cur + i, M));
            }
 
            // Check another divisor
            if ((cur / i) != i && (cur / i) % 2 == 0) {
 
                // Find recursively
                // for cur+(cur/i)
                op = Math.min(op,
                         1 + min_op(cur + (cur / i), M));
            }
        }
    }
 
    // Finally store the current state
    // result and return the answer
    return dp[cur] = op;
}
 
// Function that counts the minimum
// operation to reduce N to M
function min_operations(N, M)
{
    // Initialise dp state
    for ( i = N; i <= M; i++) {
        dp[i] = -1;
    }
 
    // Function Call
    return min_op(N, M);
}
 
// Driver Code
// Given N and M
var N = 6, M = 24;
 
// Function Call
var op = min_operations(N, M);
 
// INF indicates impossible state
if (op >= INF)
    document.write( "-1");
else
    document.write( op + "<br>");
 
// This code is contributed by noob2000.
</script>


Output

4

Time Complexity: O(N*sqrt(N))
Auxiliary Space: O(M) 

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memorization(top-down) because memorization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a table to store the solution of the subproblems.
  • Initialize the table with base cases
  • Fill up the table iteratively
  • Return the final solution

Implementation :

C++




#include <bits/stdc++.h>
using namespace std;
 
// Define a constant for impossible states
const int INF = 1e7;
 
int min_operations(int N, int M)
{
    // Initialize dp table with INF
    int dp[M+1];
    for (int i = 0; i <= M; i++) {
        dp[i] = INF;
    }
 
    // Base case
    dp[N] = 0;
 
    // Fill up dp table
    for (int i = N; i < M; i++) {
        // Skip impossible states
        if (dp[i] >= INF) {
            continue;
        }
        for (int j = 2; j * j <= i; j++) {
            if (i % j == 0) {
                if (j % 2 == 0) {
                    int next = i + j;
                    if (next <= M) {
                        // Update the minimum number of operations to reach 'next'
                        dp[next] = min(dp[next], dp[i] + 1);
                    }
                }
                if ((i / j) != j && (i / j) % 2 == 0) {
                    int next = i + (i / j);
                    if (next <= M) {
                        // Update the minimum number of operations to reach 'next'
                        dp[next] = min(dp[next], dp[i] + 1);
                    }
                }
            }
        }
    }
 
    // Return the answer
    if (dp[M] >= INF) {
      // It's impossible to reach M from N, so print -1
        cout << "-1\n";
    } else {
       // Print the minimum number of operations to reach M from N
        cout << dp[M] << "\n";
    }
}
 
// Driver Code
int main()
{
    // Given N and M
    int N = 6, M = 24;
 
    // Function Call
    min_operations(N, M);
 
    return 0;
}
 
// this code is contributed by bhardwajji


Java




import java.util.*;
 
class Main {
    // Define a constant for impossible states
    static final int INF = 10000000;
 
    static int minOperations(int N, int M)
    {
        // Initialize dp table with INF
        int[] dp = new int[M + 1];
        Arrays.fill(dp, INF);
 
        // Base case
        dp[N] = 0;
 
        // Fill up dp table
        for (int i = N; i < M; i++) {
            // Skip impossible states
            if (dp[i] >= INF) {
                continue;
            }
            for (int j = 2; j * j <= i; j++) {
                if (i % j == 0) {
                    if (j % 2 == 0) {
                        int next = i + j;
                        if (next <= M) {
                            // Update the minimum number of
                            // operations to reach 'next'
                            dp[next] = Math.min(dp[next],
                                                dp[i] + 1);
                        }
                    }
                    if ((i / j) != j && (i / j) % 2 == 0) {
                        int next = i + (i / j);
                        if (next <= M) {
                            // Update the minimum number of
                            // operations to reach 'next'
                            dp[next] = Math.min(dp[next],
                                                dp[i] + 1);
                        }
                    }
                }
            }
        }
 
        // Return the answer
        if (dp[M] >= INF) {
            // It's impossible to reach M from N, so print
            // -1
            System.out.println("-1");
        }
        else {
            // Print the minimum number of operations to
            // reach M from N
            System.out.println(dp[M]);
        }
        return 0;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given N and M
        int N = 6, M = 24;
 
        // Function Call
        minOperations(N, M);
    }
}


Python3




# Define a constant for impossible states
INF = 10**7
 
def min_operations(N: int, M: int) -> None:
    # Initialize dp table with INF
    dp = [INF] * (M+1)
 
    # Base case
    dp[N] = 0
 
    # Fill up dp table
    for i in range(N, M):
        # Skip impossible states
        if dp[i] >= INF:
            continue
        for j in range(2, int(i**0.5)+1):
            if i % j == 0:
                if j % 2 == 0:
                    next = i + j
                    if next <= M:
                        # Update the minimum number of operations to reach 'next'
                        dp[next] = min(dp[next], dp[i] + 1)
                if (i // j) != j and (i // j) % 2 == 0:
                    next = i + (i // j)
                    if next <= M:
                        # Update the minimum number of operations to reach 'next'
                        dp[next] = min(dp[next], dp[i] + 1)
 
    # Return the answer
    if dp[M] >= INF:
        # It's impossible to reach M from N, so print -1
        print("-1")
    else:
        # Print the minimum number of operations to reach M from N
        print(dp[M])
 
# Driver Code
if __name__ == '__main__':
    # Given N and M
    N, M = 6, 24
 
    # Function Call
    min_operations(N, M)


C#




using System;
 
public class MainClass
{
  // Define a constant for impossible states
  static readonly int INF = 10000000;
 
  static int minOperations(int N, int M)
  {
 
    // Initialize dp table with INF
    int[] dp = new int[M + 1];
    Array.Fill(dp, INF);
 
    // Base case
    dp[N] = 0;
 
    // Fill up dp table
    for (int i = N; i < M; i++)
    {
      // Skip impossible states
      if (dp[i] >= INF)
      {
        continue;
      }
      for (int j = 2; j * j <= i; j++)
      {
        if (i % j == 0)
        {
          if (j % 2 == 0)
          {
            int next = i + j;
            if (next <= M)
            {
              // Update the minimum number of
              // operations to reach 'next'
              dp[next] = Math.Min(dp[next],
                                  dp[i] + 1);
            }
          }
          if ((i / j) != j && (i / j) % 2 == 0)
          {
            int next = i + (i / j);
            if (next <= M)
            {
              // Update the minimum number of
              // operations to reach 'next'
              dp[next] = Math.Min(dp[next],
                                  dp[i] + 1);
            }
          }
        }
      }
    }
 
    // Return the answer
    if (dp[M] >= INF)
    {
      // It's impossible to reach M from N, so print
      // -1
      Console.WriteLine("-1");
    }
    else
    {
      // Print the minimum number of operations to
      // reach M from N
      Console.WriteLine(dp[M]);
    }
    return 0;
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    // Given N and M
    int N = 6, M = 24;
 
    // Function Call
    minOperations(N, M);
  }
}


Javascript




// Define a constant for impossible states
const INF = 1e7;
 
function min_operations(N, M) {
    // Initialize dp table with INF
    let dp = Array(M+1).fill(INF);
 
    // Base case
    dp[N] = 0;
 
    // Fill up dp table
    for (let i = N; i < M; i++) {
        // Skip impossible states
        if (dp[i] >= INF) {
            continue;
        }
        for (let j = 2; j * j <= i; j++) {
            if (i % j == 0) {
                if (j % 2 == 0) {
                    let next = i + j;
                    if (next <= M) {
                        // Update the minimum number of operations to reach 'next'
                        dp[next] = Math.min(dp[next], dp[i] + 1);
                    }
                }
                if ((i / j) != j && (i / j) % 2 == 0) {
                    let next = i + (i / j);
                    if (next <= M) {
                        // Update the minimum number of operations to reach 'next'
                        dp[next] = Math.min(dp[next], dp[i] + 1);
                    }
                }
            }
        }
    }
 
    // Return the answer
    if (dp[M] >= INF) {
      // It's impossible to reach M from N, so print -1
        console.log("-1");
    } else {
       // Print the minimum number of operations to reach M from N
        console.log(dp[M]);
    }
}
 
// Driver Code
let N = 6, M = 24;
 
// Function Call
min_operations(N, M);


Output

4

Time Complexity : O(M * sqrt(M))

Auxiliary Space: O(M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments