Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMinimum removals required to make a given array Bitonic

Minimum removals required to make a given array Bitonic

Given an array arr[] of size N, the task is to find the minimum number of array elements required to be removed from the array such that the given array is converted to a bitonic array.

Examples:

Input: arr[] = { 2, 1, 1, 5, 6, 2, 3, 1 } 
Output:
Explanation: 
Removing arr[0], arr[1] and arr[5] modifies arr[] to { 1, 5, 6, 3, 1 } 
Since the array elements follow an increasing order followed by a decreasing order, the required output is 3.

Input: arr[] = { 1, 3, 1 } 
Output:
Explanation: 
The given array is already a bitonic array. Therefore, the required output is 3.

Approach: The problem can be solved based on the concept of the longest increasing subsequence problem. Follow the steps below to solve the problem:

  • Initialize a variable, say left[], such that left[i] stores the length of the longest increasing subsequence up to the ith index.
  • Initialize a variable, say right[], such that right[i] stores the length of the longest decreasing subsequence over the range [i, N].
  • Traverse left[] and right[] array using variable i and find the maximum value of (left[i] + right[i] – 1) and store it in a variable, say maxLen.
  • Finally, print the value of N – maxLen.

Below is the implementation of the above approach:

C++14




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count minimum array elements
// required to be removed to make an array bitonic
void min_element_removal(int arr[], int N)
{
    // left[i]: Stores the length
    // of LIS up to i-th index
    vector<int> left(N, 1);
 
    // right[i]: Stores the length
    // of decreasing subsequence
    // over the range [i, N]
    vector<int> right(N, 1);
 
    // Calculate the length of LIS
    // up to i-th index
    for (int i = 1; i < N; i++) {
 
        // Traverse the array
        // upto i-th index
        for (int j = 0; j < i; j++) {
 
            // If arr[j] is less than arr[i]
            if (arr[j] < arr[i]) {
 
                // Update left[i]
                left[i] = max(left[i],
                              left[j] + 1);
            }
        }
    }
 
    // Calculate the length of decreasing
    // subsequence over the range [i, N]
    for (int i = N - 2; i >= 0;
         i--) {
 
        // Traverse right[] array
        for (int j = N - 1; j > i;
             j--) {
 
            // If arr[i] is greater
            // than arr[j]
            if (arr[i] > arr[j]) {
 
                // Update right[i]
                right[i] = max(right[i],
                               right[j] + 1);
            }
        }
    }
 
    // Stores length of the
    // longest bitonic array
    int maxLen = 0;
 
    // Traverse left[] and right[] array
    for (int i = 1; i < N - 1; i++) {
 
        // Update maxLen
        maxLen = max(maxLen, left[i] + right[i] - 1);
    }
 
    cout << (N - maxLen) << "\n";
}
 
// Function to print minimum removals
// required to make given array bitonic
void makeBitonic(int arr[], int N)
{
    if (N == 1) {
        cout << "0" << endl;
        return;
    }
 
    if (N == 2) {
        if (arr[0] != arr[1])
            cout << "0" << endl;
        else
            cout << "1" << endl;
 
        return;
    }
 
    min_element_removal(arr, N);
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 1, 1, 5, 6, 2, 3, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    makeBitonic(arr, N);
 
    return 0;
}


C




// C program to implement
// the above approach
#include <stdio.h>
#define max(a,b) ((a) > (b) ? (a) : (b)) //defining max
 
// Function to count minimum array elements
// required to be removed to make an array bitonic
void min_element_removal(int arr[], int N)
{
   
  // left[i]: Stores the length
  // of LIS up to i-th index
  int left[N];
  for (int i = 0; i < N; i++)
    left[i] = 1;
 
  // right[i]: Stores the length
  // of decreasing subsequence
  // over the range [i, N]
  int right[N];
  for (int i = 0; i < N; i++)
    right[i] = 1;
 
  // Calculate the length of LIS
  // up to i-th index
  for (int i = 1; i < N; i++) {
 
    // Traverse the array
    // upto i-th index
    for (int j = 0; j < i; j++) {
 
      // If arr[j] is less than arr[i]
      if (arr[j] < arr[i]) {
 
        // Update left[i]
        left[i] = max(left[i], left[j] + 1);
      }
    }
  }
 
  // Calculate the length of decreasing
  // subsequence over the range [i, N]
  for (int i = N - 2; i >= 0;
       i--) {
 
    // Traverse right[] array
    for (int j = N - 1; j > i;
         j--) {
 
      // If arr[i] is greater
      // than arr[j]
      if (arr[i] > arr[j]) {
 
        // Update right[i]
        right[i] = max(right[i],  right[j] + 1);
      }
    }
  }
 
  // Stores length of the
  // longest bitonic array
  int maxLen = 0;
 
  // Traverse left[] and right[] array
  for (int i = 1; i < N - 1; i++) {
 
    // Update maxLen
    maxLen = max(maxLen, left[i] + right[i] - 1);
  }
 
  printf("%d\n", (N - maxLen));
}
 
// Function to print minimum removals
// required to make given array bitonic
void makeBitonic(int arr[], int N)
{
  if (N == 1) {
    printf("0\n");
    return;
  }
 
  if (N == 2) {
    if (arr[0] != arr[1])
      printf("0\n");
    else
      printf("1\n");
 
    return;
  }
 
  min_element_removal(arr, N);
}
 
// Driver Code
int main()
{
  int arr[] = { 2, 1, 1, 5, 6, 2, 3, 1 };
  int N = sizeof(arr) / sizeof(arr[0]);
 
  makeBitonic(arr, N);
 
  return 0;
}
 
// This code is contributed by phalashi.


Java




// Java program to implement
// the above approach
class GFG {
     
    // Function to count minimum array elements
    // required to be removed to make an array bitonic
    static void min_element_removal(int arr[], int N)
    {
        // left[i]: Stores the length
        // of LIS up to i-th index
        int left[] = new int[N];
         
        for(int i = 0; i < N; i++)
            left[i] = 1;
     
        // right[i]: Stores the length
        // of decreasing subsequence
        // over the range [i, N]
        int right[] = new int[N];
         
        for(int i = 0; i < N; i++)
            right[i] = 1;
             
        // Calculate the length of LIS
        // up to i-th index
        for (int i = 1; i < N; i++) {
     
            // Traverse the array
            // upto i-th index
            for (int j = 0; j < i; j++) {
     
                // If arr[j] is less than arr[i]
                if (arr[j] < arr[i]) {
     
                    // Update left[i]
                    left[i] = Math.max(left[i],
                                  left[j] + 1);
                }
            }
        }
     
        // Calculate the length of decreasing
        // subsequence over the range [i, N]
        for (int i = N - 2; i >= 0;
             i--) {
     
            // Traverse right[] array
            for (int j = N - 1; j > i;
                 j--) {
     
                // If arr[i] is greater
                // than arr[j]
                if (arr[i] > arr[j]) {
     
                    // Update right[i]
                    right[i] = Math.max(right[i],
                                   right[j] + 1);
                }
            }
        }
     
        // Stores length of the
        // longest bitonic array
        int maxLen = 0;
     
        // Traverse left[] and right[] array
        for (int i = 1; i < N - 1; i++) {
     
            // Update maxLen
            maxLen = Math.max(maxLen, left[i] + right[i] - 1);
        }
     
        System.out.println(N - maxLen);
    }
     
    // Function to print minimum removals
    // required to make given array bitonic
    static void makeBitonic(int arr[], int N)
    {
        if (N == 1) {
            System.out.println("0");
            return;
        }
     
        if (N == 2) {
            if (arr[0] != arr[1])
                System.out.println("0");
            else
                System.out.println("1");
     
            return;
        }
     
        min_element_removal(arr, N);
    }
     
    // Driver Code
    public static void main (String[] args) {
         
        int arr[] = { 2, 1, 1, 5, 6, 2, 3, 1 };
         
        int N = arr.length;
     
        makeBitonic(arr, N);
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 program to implement
# the above approach
 
# Function to count minimum array elements
# required to be removed to make an array bitonic
def min_element_removal(arr, N):
     
    # left[i]: Stores the length
    # of LIS up to i-th index
    left = [1] * N
 
    # right[i]: Stores the length
    # of decreasing subsequence
    # over the range [i, N]
    right = [1] * (N)
 
    #Calculate the length of LIS
    #up to i-th index
    for i in range(1, N):
 
        #Traverse the array
        #upto i-th index
        for j in range(i):
 
            #If arr[j] is less than arr[i]
            if (arr[j] < arr[i]):
 
                #Update left[i]
                left[i] = max(left[i], left[j] + 1)
 
    # Calculate the length of decreasing
    # subsequence over the range [i, N]
    for i in range(N - 2, -1, -1):
 
        # Traverse right[] array
        for j in range(N - 1, i, -1):
 
            # If arr[i] is greater
            # than arr[j]
            if (arr[i] > arr[j]):
 
                # Update right[i]
                right[i] = max(right[i], right[j] + 1)
 
    # Stores length of the
    # longest bitonic array
    maxLen = 0
 
    # Traverse left[] and right[] array
    for i in range(1, N - 1):
 
        # Update maxLen
        maxLen = max(maxLen, left[i] + right[i] - 1)
 
    print((N - maxLen))
 
# Function to print minimum removals
# required to make given array bitonic
def makeBitonic(arr, N):
    if (N == 1):
        print("0")
        return
 
    if (N == 2):
        if (arr[0] != arr[1]):
            print("0")
        else:
            print("1")
 
        return
 
    min_element_removal(arr, N)
 
# Driver Code
if __name__ == '__main__':
    arr=[2, 1, 1, 5, 6, 2, 3, 1]
    N = len(arr)
 
    makeBitonic(arr, N)
 
    # This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to count minimum array elements
// required to be removed to make an array bitonic
static void min_element_removal(int []arr, int N)
{
     
    // left[i]: Stores the length
    // of LIS up to i-th index
    int []left = new int[N];
     
    for(int i = 0; i < N; i++)
        left[i] = 1;
 
    // right[i]: Stores the length
    // of decreasing subsequence
    // over the range [i, N]
    int []right = new int[N];
     
    for(int i = 0; i < N; i++)
        right[i] = 1;
         
    // Calculate the length of LIS
    // up to i-th index
    for(int i = 1; i < N; i++)
    {
         
        // Traverse the array
        // upto i-th index
        for(int j = 0; j < i; j++)
        {
             
            // If arr[j] is less than arr[i]
            if (arr[j] < arr[i])
            {
                 
                // Update left[i]
                left[i] = Math.Max(left[i],
                                   left[j] + 1);
            }
        }
    }
 
    // Calculate the length of decreasing
    // subsequence over the range [i, N]
    for(int i = N - 2; i >= 0; i--)
    {
         
        // Traverse right[] array
        for(int j = N - 1; j > i; j--)
        {
             
            // If arr[i] is greater
            // than arr[j]
            if (arr[i] > arr[j])
            {
                 
                // Update right[i]
                right[i] = Math.Max(right[i],
                                    right[j] + 1);
            }
        }
    }
 
    // Stores length of the
    // longest bitonic array
    int maxLen = 0;
 
    // Traverse left[] and right[] array
    for(int i = 1; i < N - 1; i++)
    {
         
        // Update maxLen
        maxLen = Math.Max(maxLen, left[i] +
                                 right[i] - 1);
    }
    Console.WriteLine(N - maxLen);
}
 
// Function to print minimum removals
// required to make given array bitonic
static void makeBitonic(int []arr, int N)
{
    if (N == 1)
    {
        Console.WriteLine("0");
        return;
    }
 
    if (N == 2)
    {
        if (arr[0] != arr[1])
            Console.WriteLine("0");
        else
            Console.WriteLine("1");
             
        return;
    }
    min_element_removal(arr, N);
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 2, 1, 1, 5, 6, 2, 3, 1 };
    int N = arr.Length;
 
    makeBitonic(arr, N);
}
}
 
// This code is contributed by AnkThon


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to count minimum array elements
// required to be removed to make an array bitonic
function min_element_removal(arr, N)
{
    // left[i]: Stores the length
    // of LIS up to i-th index
    var left = Array(N).fill(1);
 
    // right[i]: Stores the length
    // of decreasing subsequence
    // over the range [i, N]
    var right = Array(N).fill(1);
 
    // Calculate the length of LIS
    // up to i-th index
    for (var i = 1; i < N; i++) {
 
        // Traverse the array
        // upto i-th index
        for (var j = 0; j < i; j++) {
 
            // If arr[j] is less than arr[i]
            if (arr[j] < arr[i]) {
 
                // Update left[i]
                left[i] = Math.max(left[i],
                              left[j] + 1);
            }
        }
    }
 
    // Calculate the length of decreasing
    // subsequence over the range [i, N]
    for (var i = N - 2; i >= 0;
         i--) {
 
        // Traverse right[] array
        for (var j = N - 1; j > i;
             j--) {
 
            // If arr[i] is greater
            // than arr[j]
            if (arr[i] > arr[j]) {
 
                // Update right[i]
                right[i] = Math.max(right[i],
                               right[j] + 1);
            }
        }
    }
 
    // Stores length of the
    // longest bitonic array
    var maxLen = 0;
 
    // Traverse left[] and right[] array
    for (var i = 1; i < N - 1; i++) {
 
        // Update maxLen
        maxLen = Math.max(maxLen, left[i] + right[i] - 1);
    }
 
    document.write((N - maxLen) + "<br>");
}
 
// Function to print minimum removals
// required to make given array bitonic
function makeBitonic(arr, N)
{
    if (N == 1) {
        document.write( "0" + "<br>");
        return;
    }
 
    if (N == 2) {
        if (arr[0] != arr[1])
            document.write( "0" + "<br>");
        else
            document.write( "1" + "<br>");
 
        return;
    }
 
    min_element_removal(arr, N);
}
 
// Driver Code
var arr = [2, 1, 1, 5, 6, 2, 3, 1];
var N = arr.length;
makeBitonic(arr, N);
 
// This code is contributed by rutvik_56.
</script>


Output: 

3

 

Time Complexity: O(N2
Auxiliary Space: O(N)

Optimized Approach:

This approach has a time complexity of O(n), where n is the number of elements in the array, since it takes a single pass through the array to find the local maximum and local minimum, and it performs a constant amount of work for each iteration of the loop.

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to count minimum array elements
// required to be removed to make an array bitonic
void min_element_removal(int arr[], int N)
{
    int l = 0, r = N-1, count = 0;
    while(l < r)
    {
        // find the first local maximum from the left side
        while(l < N-1 && arr[l] <= arr[l+1])
            l++;
 
        // find the first local minimum from the right side
        while(r > 0 && arr[r] <= arr[r-1])
            r--;
 
        // if both indices have not crossed each other,
        // remove the elements between them
        if(l < r)
        {
            l++;
            r--;
            count++;
        }
    }
 
    // print the minimum number of removals
    cout << count << endl;
}
 
// Driver Code
int main()
{
    int arr[] = { 5,7,1,3,6,2,1 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    min_element_removal(arr, N);
 
    return 0;
}


Java




import java.util.*;
 
class Main {
    // Function to count minimum array elements
    // required to be removed to make an array bitonic
    public static void min_element_removal(int arr[], int N)
    {
        int l = 0, r = N - 1, count = 0;
        while (l < r) {
            // find the first local maximum from the left
            // side
            while (l < N - 1 && arr[l] <= arr[l + 1])
                l++;
 
            // find the first local minimum from the right
            // side
            while (r > 0 && arr[r] <= arr[r - 1])
                r--;
 
            // if both indices have not crossed each other,
            // remove the elements between them
            if (l < r) {
                l++;
                r--;
                count++;
            }
        }
 
        // print the minimum number of removals
        System.out.println(count);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 5, 7, 1, 3, 6, 2, 1 };
        int N = arr.length;
 
        min_element_removal(arr, N);
    }
}


Python3




# Function to count minimum array elements
# required to be removed to make an array bitonic
def min_element_removal(arr, N):
    l, r, count = 0, N-1, 0
    while l < r:
       
        # find the first local maximum from the left side
        while l < N-1 and arr[l] <= arr[l+1]:
            l += 1
 
        # find the first local minimum from the right side
        while r > 0 and arr[r] <= arr[r-1]:
            r -= 1
 
        # if both indices have not crossed each other,
        # remove the elements between them
        if l < r:
            l += 1
            r -= 1
            count += 1
 
    # print the minimum number of removals
    print(count)
 
 
# Driver Code
arr = [5, 7, 1, 3, 6, 2, 1]
N = len(arr)
 
min_element_removal(arr, N)


Javascript




// Function to count minimum array elements
// required to be removed to make an array bitonic
function min_element_removal(arr, N) {
  let l = 0, r = N-1, count = 0;
  while (l < r) {
       
    // find the first local maximum from the left side
    while (l < N-1 && arr[l] <= arr[l+1]) {
      l++;
    }
 
    // find the first local minimum from the right side
    while (r > 0 && arr[r] <= arr[r-1]) {
      r--;
    }
 
    // if both indices have not crossed each other,
    // remove the elements between them
    if (l < r) {
      l++;
      r--;
      count++;
    }
  }
 
  // print the minimum number of removals
  console.log(count);
}
 
// Driver Code
let arr = [5, 7, 1, 3, 6, 2, 1];
let N = arr.length;
 
min_element_removal(arr, N);


C#




using System;
 
class Program
{
    static void Main(string[] args)
    {
        int[] arr = { 5, 7, 1, 3, 6, 2, 1 };
        int N = arr.Length;
 
        int l = 0, r = N - 1, count = 0;
        while (l < r)
        {
            // find the first local maximum from the left side
            while (l < N - 1 && arr[l] <= arr[l + 1])
                l++;
 
            // find the first local minimum from the right side
            while (r > 0 && arr[r] <= arr[r - 1])
                r--;
 
            // if both indices have not crossed each other,
            // remove the elements between them
            if (l < r)
            {
                l++;
                r--;
                count++;
            }
        }
 
        // print the minimum number of removals
        Console.WriteLine(count);
    }
}


Output

1

Time Complexity: O(N) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments