Given an integer K and an array A[] of size N, the task is to create a new array with sum K with minimum number of operations, where in each operation, an element can be removed either from the start or end of A[] and appended to the new array. If it is not possible to generate a new array with sum K, print -1. If there are multiple answers, print any one of them.
Examples
Input: K = 6, A[] = {1, 2, 3, 1, 3}, N = 5
Output: 1 3 2
Explanation: Operation 1: Removing A[0] modifies A[] to {2, 3, 1, 3}. Sum = 1.
Operation 2: Removing A[3] modifies A[] to {2, 1, 3}. Sum = 4.
Operation 3: Removing A[0] modifies A[] to {1, 3}. Sum = 6.Input: K = 5, A[] = {1, 2, 7}, N = 3
Output: -1
Naive Approach: Follow the steps below to solve the problem:
- The task is to find two minimum length subarrays, one from the beginning and one from the end of the array (possibly empty), such that their sum is equal to K.
- Traverse the array from the left and calculate the subarray needed to be removed from the right such that the total sum is K.
Below is the implementation of the above approach:
C++
// C++ program for the above approach   #include <bits/stdc++.h> using namespace std;   // Function to find the minimum number of // elements required to be removed from // the ends of an array to obtain a sum K int minSizeArr( int A[], int N, int K) {     // Number of elements removed from the     // left and right ends of the array     int leftTaken = N, rightTaken = N;       // Sum of left and right subarrays     int leftSum = 0, rightSum = 0;       // No element is taken from left initially     for ( int left = -1; left < N; left++) {           if (left != -1)             leftSum += A[left];           rightSum = 0;           // Start taking elements from right side         for ( int right = N - 1; right > left; right--) {               rightSum += A[right];               if (leftSum + rightSum == K) {                   // (left + 1): Count of elements                 // removed from the left                 // (N-right): Count of elements                 // removed from the right                 if (leftTaken + rightTaken                     > (left + 1) + (N - right)) {                       leftTaken = left + 1;                     rightTaken = N - right;                 }                 break ;             }             // If sum is greater than K             if (leftSum + rightSum > K)                 break ;         }     }       if (leftTaken + rightTaken <= N) {           for ( int i = 0; i < leftTaken; i++)             cout << A[i] << " " ;         for ( int i = 0; i < rightTaken; i++)             cout << A[N - i - 1] << " " ;     }       // If it is not possible to obtain sum K     else         cout << -1; }   // Driver Code int main() {     int N = 7;       // Given Array     int A[] = { 3, 2, 1, 1, 1, 1, 3 };       // Given target sum     int K = 10;       minSizeArr(A, N, K);       return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{          // Function to find the minimum number of // elements required to be removed from // the ends of an array to obtain a sum K static void minSizeArr( int A[], int N, int K) {     // Number of elements removed from the     // left and right ends of the array     int leftTaken = N, rightTaken = N;         // Sum of left and right subarrays     int leftSum = 0 , rightSum = 0 ;         // No element is taken from left initially     for ( int left = - 1 ; left < N; left++) {             if (left != - 1 )             leftSum += A[left];             rightSum = 0 ;             // Start taking elements from right side         for ( int right = N - 1 ; right > left; right--)         {                 rightSum += A[right];                 if (leftSum + rightSum == K) {                     // (left + 1): Count of elements                 // removed from the left                 // (N-right): Count of elements                 // removed from the right                 if (leftTaken + rightTaken                     > (left + 1 ) + (N - right)) {                         leftTaken = left + 1 ;                     rightTaken = N - right;                 }                 break ;             }             // If sum is greater than K             if (leftSum + rightSum > K)                 break ;         }     }         if (leftTaken + rightTaken <= N) {             for ( int i = 0 ; i < leftTaken; i++)             System.out.print( A[i] + " " );         for ( int i = 0 ; i < rightTaken; i++)             System.out.print(A[N - i - 1 ] + " " );     }         // If it is not possible to obtain sum K     else         System.out.print(- 1 ); }     // Driver code public static void main(String[] args) {     int N = 7 ;         // Given Array     int A[] = { 3 , 2 , 1 , 1 , 1 , 1 , 3 };         // Given target sum     int K = 10 ;         minSizeArr(A, N, K); } }   // This code is contributed by splevel62. |
Python3
# Python3 program for the above approach   # Function to find the minimum number of # elements required to be removed from # the ends of an array to obtain a sum K def minSizeArr(A, N, K):           # Number of elements removed from the     # left and right ends of the array     leftTaken = N     rightTaken = N       # Sum of left and right subarrays     leftSum = 0     rightSum = 0       # No element is taken from left initially     for left in range ( - 1 , N):         if (left ! = - 1 ):             leftSum + = A[left]           rightSum = 0           # Start taking elements from right side         for right in range (N - 1 , left, - 1 ):             rightSum + = A[right]               if (leftSum + rightSum = = K):                                   # (left + 1): Count of elements                 # removed from the left                 # (N-right): Count of elements                 # removed from the right                 if (leftTaken + rightTaken >                    (left + 1 ) + (N - right)):                     leftTaken = left + 1                     rightTaken = N - right                   break               # If sum is greater than K             if (leftSum + rightSum > K):                 break       if (leftTaken + rightTaken < = N):         for i in range (leftTaken):             print (A[i], end = " " )                       for i in range (rightTaken):             print (A[N - i - 1 ], end = " " )       # If it is not possible to obtain sum K     else :         print ( - 1 )   # Driver Code if __name__ = = "__main__" :       N = 7       # Given Array     A = [ 3 , 2 , 1 , 1 , 1 , 1 , 3 ]       # Given target sum     K = 10       minSizeArr(A, N, K)   # This code is contributed by ukasp |
C#
// C# program for the above approach using System;   class GFG {       // Function to find the smallest // array that can be removed from // the ends of an array to obtain sum K static void minSizeArr( int [] A, int N, int K) {         // Number of elements removed from the     // left and right ends of the array     int leftTaken = N, rightTaken = N;         // Sum of left and right subarrays     int leftSum = 0, rightSum = 0;         // No element is taken from left initially     for ( int left = -1; left < N; left++) {             if (left != -1)             leftSum += A[left];             rightSum = 0;             // Start taking elements from right side         for ( int right = N - 1; right > left; right--)         {                 rightSum += A[right];                 if (leftSum + rightSum == K) {                     // (left + 1): Count of elements                 // removed from the left                 // (N-right): Count of elements                 // removed from the right                 if (leftTaken + rightTaken                     > (left + 1) + (N - right)) {                         leftTaken = left + 1;                     rightTaken = N - right;                 }                 break ;             }             // If sum is greater than K             if (leftSum + rightSum > K)                 break ;         }     }         if (leftTaken + rightTaken <= N) {             for ( int i = 0; i < leftTaken; i++)             Console.Write( A[i] + " " );         for ( int i = 0; i < rightTaken; i++)             Console.Write(A[N - i - 1] + " " );     }         // If it is not possible to obtain sum K     else         Console.Write(-1); }         // Driver Code     public static void Main()     {         int N = 7;         // Given Array     int [] A = { 3, 2, 1, 1, 1, 1, 3 };         // Given target sum     int K = 10;         minSizeArr(A, N, K);     } }   // This code is contributed by code_hunt. |
Javascript
<script>   // JavaScript program for the above approach   // Function to find the minimum number of // elements required to be removed from // the ends of an array to obtain a sum K function minSizeArr(A, N, K) {     // Number of elements removed from the     // left and right ends of the array     let leftTaken = N, rightTaken = N;          // Sum of left and right subarrays     let leftSum = 0, rightSum = 0;          // No element is taken from left initially     for (let left = -1; left < N; left++) {              if (left != -1)             leftSum += A[left];              rightSum = 0;              // Start taking elements from right side         for (let right = N - 1; right > left; right--)         {                  rightSum += A[right];                  if (leftSum + rightSum == K) {                      // (left + 1): Count of elements                 // removed from the left                 // (N-right): Count of elements                 // removed from the right                 if (leftTaken + rightTaken                     > (left + 1) + (N - right)) {                          leftTaken = left + 1;                     rightTaken = N - right;                 }                 break ;             }             // If sum is greater than K             if (leftSum + rightSum > K)                 break ;         }     }          if (leftTaken + rightTaken <= N) {              for (let i = 0; i < leftTaken; i++)             document.write( A[i] + " " );         for (let i = 0; i < rightTaken; i++)             document.write(A[N - i - 1] + " " );     }          // If it is not possible to obtain sum K     else         document.write(-1); }        // Driver code     let N = 7;          // Given Array     let A = [ 3, 2, 1, 1, 1, 1, 3 ];          // Given target sum     let K = 10;          minSizeArr(A, N, K);   // This code is contributed by souraavghosh0416. </script> |
3 2 3 1 1
Â
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: Follow the steps below to optimize the above approach:Â
- Calculate the sum of elements of the array A[] and store it in a variable, say Total.
- The problem can be seen as finding the maximum size subarray with sum (Total – K).
- The remaining elements will add up to K.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std;   // Function to find the smallest // array that can be removed from // the ends of an array to obtain sum K void minSizeArr( int A[], int N, int K) {     int sum = 0;     // Sum of complete array     for ( int i = 0; i < N; i++)         sum += A[i];       // If given number is greater     // than sum of the array     if (K > sum) {         cout << -1;         return ;     }       // If number is equal to     // the sum of array     if (K == sum) {         for ( int i = 0; i < N; i++) {             cout << A[i] << " " ;         }         return ;     }       // tar is sum of middle subarray     int tar = sum - K;       // Find the longest subarray     // with sum equal to tar     unordered_map< int , int > um;     um[0] = -1;       int left, right;     int cur = 0, maxi = -1;     for ( int i = 0; i < N; i++) {         cur += A[i];         if (um.find(cur - tar) != um.end()             && i - um[cur - tar] > maxi) {             maxi = i - um[cur - tar];             right = i;             left = um[cur - tar];         }         if (um.find(cur) == um.end())             um[cur] = i;     }       // If there is no subarray with     // sum equal to tar     if (maxi == -1)         cout << -1;       else {         for ( int i = 0; i <= left; i++)             cout << A[i] << " " ;         for ( int i = 0; i < right; i++)             cout << A[N - i - 1] << " " ;     } }   // Driver Code int main() {     int N = 7;       // Given Array     int A[] = { 3, 2, 1, 1, 1, 1, 3 };       // Given target sum     int K = 10;       minSizeArr(A, N, K);     return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*;   class GFG {           // Function to find the smallest // array that can be removed from // the ends of an array to obtain sum K static void minSizeArr( int A[], int N, int K) {     int sum = 0 ;         // Sum of complete array     for ( int i = 0 ; i < N; i++)         sum += A[i];       // If given number is greater     // than sum of the array     if (K > sum) {         System.out.print(- 1 );         return ;     }       // If number is equal to     // the sum of array     if (K == sum) {         for ( int i = 0 ; i < N; i++) {             System.out.print(A[i] + " " );         }         return ;     }       // tar is sum of middle subarray     int tar = sum - K;       // Find the longest subarray     // with sum equal to tar     HashMap<Integer, Integer> um = new HashMap<Integer, Integer>();      um.put( 0 , - 1 );       int left = 0 , right = 0 ;     int cur = 0 , maxi = - 1 ;     for ( int i = 0 ; i < N; i++) {         cur += A[i];         if (um.containsKey(cur - tar)             && i - um.get(cur - tar) > maxi) {             maxi = i - um.get(cur - tar);             right = i;             left = um.get(cur - tar);         }         if (!um.containsKey(cur))             um.put(cur, i);     }       // If there is no subarray with     // sum equal to tar     if (maxi == - 1 )         System.out.println(- 1 );       else {         for ( int i = 0 ; i <= left; i++)             System.out.print(A[i] + " " );         for ( int i = 0 ; i < right; i++)             System.out.print(A[N - i - 1 ] + " " );     } }   // Driver Code     public static void main (String[] args) {         int N = 7 ;       // Given Array     int A[] = { 3 , 2 , 1 , 1 , 1 , 1 , 3 };       // Given target sum     int K = 10 ;       minSizeArr(A, N, K);     } }   // This code is contributed by Dharanendra L V. |
Python3
# python 3 program for the above approach   # Function to find the smallest # array that can be removed from # the ends of an array to obtain sum K def minSizeArr(A, N, K):     sum = 0           # Sum of complete array     for i in range (N):         sum + = A[i]       # If given number is greater     # than sum of the array     if (K > sum ):         print ( - 1 );         return       # If number is equal to     # the sum of array     if (K = = sum ):         for i in range (N):             print (A[i],end = " " )         return       # tar is sum of middle subarray     tar = sum - K       # Find the longest subarray     # with sum equal to tar     um = {}     um[ 0 ] = - 1       left = 0     right = 0     cur = 0     maxi = - 1     for i in range (N):         cur + = A[i]         if ((cur - tar) in um and (i - um[cur - tar]) > maxi):             maxi = i - um[cur - tar]             right = i             left = um[cur - tar]         if (cur not in um):             um[cur] = i       # If there is no subarray with     # sum equal to tar     if (maxi = = - 1 ):         print ( - 1 )       else :         for i in range (left + 1 ):             print (A[i], end = " " )         for i in range (right):             print (A[N - i - 1 ], end = " " )   # Driver Code if __name__ = = '__main__' :     N = 7           # Given Array     A = [ 3 , 2 , 1 , 1 , 1 , 1 , 3 ]           # Given target sum     K = 10     minSizeArr(A, N, K)           # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# program for // the above approach using System; using System.Collections.Generic;    class GFG{       // Function to find the smallest // array that can be removed from // the ends of an array to obtain sum K static void minSizeArr( int [] A, int N, int K) {     int sum = 0;         // Sum of complete array     for ( int i = 0; i < N; i++)         sum += A[i];       // If given number is greater     // than sum of the array     if (K > sum)     {         Console.WriteLine(-1);         return ;     }       // If number is equal to     // the sum of array     if (K == sum)     {         for ( int i = 0; i < N; i++)         {            Console.Write(A[i] + " " );         }         return ;     }       // tar is sum of middle subarray     int tar = sum - K;       // Find the longest subarray     // with sum equal to tar     Dictionary< int ,                int > um = new Dictionary< int ,                                          int >();      um[0] = -1;       int left = 0, right = 0;     int cur = 0, maxi = -1;     for ( int i = 0; i < N; i++)     {         cur += A[i];         if (um.ContainsKey(cur - tar) &&              i - um[cur - tar] > maxi)         {             maxi = i - um[cur - tar];             right = i;             left = um[cur - tar];         }         if (!um.ContainsKey(cur))             um[cur] = i;     }       // If there is no subarray with     // sum equal to tar     if (maxi == -1)         Console.Write(-1);       else      {         for ( int i = 0; i <= left; i++)             Console.Write(A[i] + " " );         for ( int i = 0; i < right; i++)             Console.Write(A[N - i - 1] + " " );     } }     // Driver code static public void Main() {     int N = 7;           // Given Array     int [] A = { 3, 2, 1, 1, 1, 1, 3 };           // Given target sum     int K = 10;           minSizeArr(A, N, K); } }   // This code is contributed by offbeat |
Javascript
<script>   // JavaScript program for the above approach   // Function to find the smallest // array that can be removed from // the ends of an array to obtain sum K function minSizeArr(A, N, K) {     var sum = 0;     var i;     // Sum of complete array     for (i = 0; i < N; i++)         sum += A[i];       // If given number is greater     // than sum of the array     if (K > sum) {         cout << -1;         return ;     }       // If number is equal to     // the sum of array     if (K == sum) {         for (i = 0; i < N; i++) {             document.write(A[i]+ ' ' );         }         return ;     }       // tar is sum of middle subarray     var tar = sum - K;       // Find the longest subarray     // with sum equal to tar     var um = new Map();     um[0] = -1;       var left, right;     var cur = 0, maxi = -1;     for (i = 0; i < N; i++) {         cur += A[i];         if (um.has(cur - tar)             && i - um.get(cur - tar) > maxi) {             maxi = i - um.get(cur - tar);             right = i;             left = um.get(cur - tar);         }         if (!um.has(cur))             um.set(cur,i);     }       // If there is no subarray with     // sum equal to tar     if (maxi == -1)         cout << -1;       else {         for (i = 0; i <= left; i++)             document.write(A[i]+ ' ' );         for (i = 0; i < right; i++)             document.write(A[N - i - 1]+ ' ' );     } }   // Driver Code       var N = 7;       // Given Array     var A = [3, 2, 1, 1, 1, 1, 3];       // Given target sum     var K = 10;       minSizeArr(A, N, K);   </script> |
3 2 3 1 1
Â
Time Complexity: O(N)
Auxiliary Space: O(N)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!