Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMinimum possible number with the given operation

Minimum possible number with the given operation

Given a positive integer N, the task is to convert this integer to the minimum possible integer without leading zeroes by changing the digits. A digit X can only be changed into a digit Y if X + Y = 9.
Examples: 
 

Input: N = 589 
Output: 410 
Change 5 -> 4, 8 -> 1 and 9 -> 0
Input: N = 934 
Output: 934 
934 cannot be minimised. 
 

 

Approach: Only the digits which are greater than or equal to 5 need to be changed as changing the digits which are less than 5 will result in a larger number. After all the required digits have been updated, check whether the resultant number has a leading zero, if yes then change it to a 9.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum possible
// integer that can be obtained from the
// given integer after performing
// the given operations
string minInt(string str)
{
    // For every digit
    for (int i = 0; i < str.length(); i++) {
 
        // Digits less than 5 need not to be
        // changed as changing them will
        // lead to a larger number
        if (str[i] >= '5') {
            str[i] = ('9' - str[i]) + '0';
        }
    }
 
    // The resulting integer
    // cannot have leading zero
    if (str[0] == '0')
        str[0] = '9';
 
    return str;
}
 
// Driver code
int main()
{
    string str = "589";
 
    cout << minInt(str);
 
    return 0;
}


Java




// Java implementation of the approach
 
// Function to return the minimum possible
// integer that can be obtained from the
// given integer after performing
// the given operations
 
import java.util.*;
 
class GFG{
 
static String minInt(String str)
{
    // For every digit
    String s = "";
    for (int i = 0; i < str.length(); i++)
    {
 
        // Digits less than 5 need not to be
        // changed as changing them will
        // lead to a larger number
        if (str.charAt(i) >= '5')
        {
            s += (char)(('9' - str.charAt(i)) + '0');
        }
        else
        {
            s += str.charAt(i);
        }
         
    }
 
    // The resulting integer
    // cannot have leading zero
    if (str.charAt(0) == '0')
        s += '9';
 
    return s;
}
 
// Driver code
public static void main(String []args)
{
    String str = "589";
 
    System.out.println(minInt(str));
}
}
 
// This code is contributed by Surendra_Gangwar


Python3




# Python3 implementation of the approach
  
# Function to return the minimum possible
# integer that can be obtained from the
# given integer after performing
# the given operations
def minInt(str1):
     
    # For every digit
    for i in range(len(str1)):
 
        # Digits less than 5 need not to be
        # changed as changing them will
        # lead to a larger number
        if (str1[i] >= 5):
            str1[i] = (9 - str1[i])
 
    # The resulting integer
    # cannot have leading zero
    if (str1[0] == 0):
        str1[0] = 9
         
    temp = ""
 
    for i in str1:
        temp += str(i)
 
    return temp
 
# Driver code
str1 = "589"
str1 = [int(i) for i in str1]
 
print(minInt(str1))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to return the minimum possible
    // integer that can be obtained from the
    // given integer after performing
    // the given operations
    static string minInt(char []str)
    {
        // For every digit
        for (int i = 0; i < str.Length; i++)
        {
     
            // Digits less than 5 need not to be
            // changed as changing them will
            // lead to a larger number
            if ((int)str[i] >= (int)('5'))
            {
                str[i] = (char)(((int)('9') -
                                 (int)(str[i])) +
                                 (int)('0'));
            }
        }
     
        // The resulting integer
        // cannot have leading zero
        if (str[0] == '0')
            str[0] = '9';
     
        string s = new string(str);
        return s;
    }
     
    // Driver code
    static public void Main ()
    {
        string str = "589";
        Console.WriteLine(minInt(str.ToCharArray()));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
    // JavaScript implementation of the above approach
     
    // Function to return the minimum possible
    // integer that can be obtained from the
    // given integer after performing
    // the given operations
    function minInt(str)
    {
        // For every digit
        for (let i = 0; i < str.length; i++)
        {
       
            // Digits less than 5 need not to be
            // changed as changing them will
            // lead to a larger number
            if (str[i].charCodeAt() >= ('5').charCodeAt())
            {
                str[i] = String.fromCharCode((('9').charCodeAt() -
                                 (str[i]).charCodeAt()) +
                                 ('0').charCodeAt());
            }
        }
       
        // The resulting integer
        // cannot have leading zero
        if (str[0] == '0')
            str[0] = '9';
       
        let s = str.join("");
        return s;
    }
     
    let str = "589";
      document.write(minInt(str.split('')));
             
</script>


Output: 

410

 

Time Complexity: O(|str|)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments