Given three positive integers A, B and C. The task is to find the minimum integer X > 0 such that:
- X % C = 0 and
- X must not belong to the range [A, B]
Examples:
Input: A = 2, B = 4, C = 2
Output: 6
Input: A = 5, B = 10, C = 4
Output: 4
Approach:
- If C doesn’t belong to [A, B] i.e. C < A or C > B then C is the required number.
- Else get the first multiple of C greater than B which is the required answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <iostream> using namespace std; // Function to return the required number int getMinNum( int a, int b, int c) { // If doesn't belong to the range // then c is the required number if (c < a || c > b) return c; // Else get the next multiple of c // starting from b + 1 int x = ((b / c) * c) + c; return x; } // Driver code int main() { int a = 2, b = 4, c = 4; cout << getMinNum(a, b, c); return 0; } |
Java
// Java implementation of the approach import java.io.*; import java.math.*; public class GFG { // Function to return the required number int getMinNum( int a, int b, int c) { // If doesn't belong to the range // then c is the required number if (c < a || c > b) { return c; } // Else get the next multiple of c // starting from b + 1 int x = ((b / c) * c) + c; return x; } // Driver code public static void main(String args[]) { int a = 2 ; int b = 4 ; int c = 4 ; GFG g = new GFG(); System.out.println(g.getMinNum(a, b, c)); } } // This code is contributed by Shivi_Aggarwal |
Python3
# Python3 implementation of the approach # Function to return the required number def getMinNum(a, b, c): # If doesn't belong to the range # then c is the required number if (c < a or c > b): return c # Else get the next multiple of c # starting from b + 1 x = ((b / / c) * c) + c return x # Driver code a, b, c = 2 , 4 , 4 print (getMinNum(a, b, c)) # This code is contributed by # Mohit kumar 29 |
C#
// C# implementation of the approach using System; class GFG { // Function to return the required number static int getMinNum( int a, int b, int c) { // If doesn't belong to the range // then c is the required number if (c < a || c > b) { return c; } // Else get the next multiple of c // starting from b + 1 int x = ((b / c) * c) + c; return x; } // Driver code static public void Main () { int a = 2, b = 4, c = 4; Console.WriteLine( getMinNum(a, b, c)); } } // This Code is contributed by ajit.. |
PHP
<?php // PHP implementation of the above approach // Function to return the required number function getMinNum( $a , $b , $c ) { // If doesn't belong to the range // then c is the required number if ( $c < $a || $c > $b ) return $c ; // Else get the next multiple of c // starting from b + 1 $x = ( floor (( $b / $c )) * $c ) + $c ; return $x ; } // Driver code $a = 2; $b = 4; $c = 4; echo getMinNum( $a , $b , $c ); // This code is contributed by Ryuga ?> |
Javascript
<script> // Javascript implementation of the approach // Function to return the required number function getMinNum(a, b, c) { // If doesn't belong to the range // then c is the required number if (c < a || c > b) return c; // Else get the next multiple of c // starting from b + 1 let x = (parseInt(b / c) * c) + c; return x; } // Driver code let a = 2, b = 4, c = 4; document.write(getMinNum(a, b, c)); // This code is contributed by souravmahato348 </script> |
8
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!