Wednesday, January 22, 2025
Google search engine
HomeData Modelling & AIMinimum positive integer divisible by C and is not in range

Minimum positive integer divisible by C and is not in range [A, B]

Given three positive integers A, B and C. The task is to find the minimum integer X > 0 such that: 
 

  1. X % C = 0 and
  2. X must not belong to the range [A, B]

Examples: 
 

Input: A = 2, B = 4, C = 2 
Output: 6
Input: A = 5, B = 10, C = 4 
Output:
 

 

Approach: 
 

  • If C doesn’t belong to [A, B] i.e. C < A or C > B then C is the required number.
  • Else get the first multiple of C greater than B which is the required answer.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the required number
int getMinNum(int a, int b, int c)
{
 
    // If doesn't belong to the range
    // then c is the required number
    if (c < a || c > b)
        return c;
 
    // Else get the next multiple of c
    // starting from b + 1
    int x = ((b / c) * c) + c;
 
    return x;
}
 
// Driver code
int main()
{
    int a = 2, b = 4, c = 4;
    cout << getMinNum(a, b, c);
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
import java.math.*;
public class GFG
{
    // Function to return the required number
    int getMinNum(int a, int b, int c)
    {
 
        // If doesn't belong to the range
        // then c is the required number
        if (c < a || c > b)
        {
            return c;
        }
 
        // Else get the next multiple of c
        // starting from b + 1
        int x = ((b / c) * c) + c;
 
        return x;
    }
 
// Driver code
public static void main(String args[])
{
    int a = 2;
    int b = 4;
    int c = 4;
    GFG g = new GFG();
    System.out.println(g.getMinNum(a, b, c));
}
}
 
// This code is contributed by Shivi_Aggarwal


Python3




# Python3 implementation of the approach
# Function to return the required number
def getMinNum(a, b, c):
 
    # If doesn't belong to the range
    # then c is the required number
    if (c < a or c > b):
        return c
 
    # Else get the next multiple of c
    # starting from b + 1
    x = ((b // c) * c) + c
 
    return x
 
# Driver code
a, b, c = 2, 4, 4
print(getMinNum(a, b, c))
 
# This code is contributed by
# Mohit kumar 29


C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Function to return the required number
    static int getMinNum(int a, int b, int c)
    {
 
        // If doesn't belong to the range
        // then c is the required number
        if (c < a || c > b)
        {
            return c;
        }
 
        // Else get the next multiple of c
        // starting from b + 1
        int x = ((b / c) * c) + c;
 
        return x;
    }
 
    // Driver code
    static public void Main ()
    {
        int a = 2, b = 4, c = 4;
        Console.WriteLine( getMinNum(a, b, c));
    }
}
 
// This Code is contributed by ajit..


PHP




<?php
// PHP implementation of the above approach
 
// Function to return the required number
function getMinNum($a, $b, $c)
{
 
    // If doesn't belong to the range
    // then c is the required number
    if ($c < $a || $c > $b)
        return $c;
 
    // Else get the next multiple of c
    // starting from b + 1
    $x = (floor(($b / $c)) * $c) + $c;
 
    return $x;
}
 
// Driver code
$a = 2;
$b = 4;
$c = 4;
 
echo getMinNum($a, $b, $c);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the required number
function getMinNum(a, b, c)
{
 
    // If doesn't belong to the range
    // then c is the required number
    if (c < a || c > b)
        return c;
 
    // Else get the next multiple of c
    // starting from b + 1
    let x = (parseInt(b / c) * c) + c;
 
    return x;
}
 
// Driver code
    let a = 2, b = 4, c = 4;
    document.write(getMinNum(a, b, c));
 
// This code is contributed by souravmahato348
</script>


Output: 

8

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments