Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMinimum operations required to make two elements equal in Array

Minimum operations required to make two elements equal in Array

Given array A[] of size N and integer X, the task is to find the minimum number of operations to make any two elements equal in the array. In one operation choose any element A[i] and replace it with A[i] & X. where & is bitwise AND. If such operations do not exist print -1.

Examples: 

Input: A[] = {1, 2, 3, 7}, X = 3
Output: 1
Explanation: Performing above operation on A[4] = 7, A[4] = A[4] & X  = 7 & 3 = 3. Array A[] becomes {1, 2, 3, 3}, 3 exists on 3rd position so in one operation two elements can be made equal in array A[].

Input: A[] = {1, 2, 3}, X = 7
Output: -1
Explanation: It is not possible to make any two elements equal by performing above operations any number of times.

Naive approach: The basic way to solve the problem is as follows:

Making bitwise AND of current element and checking whether if any other element exists with same value.

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach:  The above approach can be optimized based on the following idea:

This problem can be divided in four cases:

  • Case 1: Two equal elements already exist in array A[], In that case answer will be 0.
  • Case 2: It is not possible to create two elements which are equal by above operations, In that case answer will be -1.
  • Case 3: It is possible to make any two elements equal by performing above operations exactly once.
  • Case 4: It is possible to make any two elements equal by performing above operations exactly twice.

Follow the steps below to solve the problem:

  • Creating HashMap[].
  • Iterating from 1 to N and filling frequency HashMap[] if some element repeats again return 0.
  • Iterating from 1 to N and for each iteration remove the current element from HashMap[] and perform an operation on the current index and check whether it exists in HashMap[] if it exists return 1 else insert the current element again in HashMap[].
  • Clear the HashMap[].
  • Iterating from 1 to N and performing an operation on each element along with filling HashMap[], if the frequency of any element is more than 2 then return 2.
  • Finally, if the function reaches the end return -1.

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to minimum operations required
// to make two elements equal in array.
int minOperations(int A[], int N, int M)
{
 
    // Creating HashMap
    map<int, int> HashMap;
 
    for (int i = 0; i < N; i++) {
 
        // Filling frequency HashMap
        HashMap[A[i]]++;
 
        // If two values same already exist
        if (HashMap[A[i]] >= 2)
            return 0;
    }
 
    for (int i = 0; i < N; i++) {
 
        // Removing occurrence of current
        // element from HashMap
        HashMap[A[i]]--;
 
        // Performing operation on
        // current index
        int performOperation = A[i] & M;
 
        // Check if another element exists
        // with same value
        if (HashMap[performOperation])
            return 1;
 
        // Inserting back occurrence
        // of element
        HashMap[A[i]]++;
    }
 
    // Clearing the HashMap
    HashMap.clear();
 
    for (int i = 0; i < N; i++) {
 
        // Performing operation on
        // current index
        int performOperation = A[i] & M;
 
        // Inserting this element
        // in Hashmap
        HashMap[performOperation]++;
 
        // If two elements exist such that
        // both formed with operation
        if (HashMap[A[i]] == 2)
            return 2;
    }
 
    // If answer do not exist
    return -1;
}
 
// Driver Code
int main()
{
 
    // Input 1
    int A[] = { 1, 2, 3, 7 };
    int N = sizeof(A) / sizeof(A[0]);
    int X = 3;
 
    // Function Call
    cout << minOperations(A, N, X) << endl;
 
    // Input 2
    int A1[] = { 1, 2, 3 };
    int N1 = sizeof(A1) / sizeof(A1[0]);
    int X1 = 7;
 
    // Function Call
    cout << minOperations(A1, N1, X1) << endl;
    return 0;
}


Python3




# Python code to implement the approach
 
# Function to minimum operations required
# to make two elements equal in array.
def minOperations(A, N, M):
    # Creating HashMap
    HashMap = {}
     
    for i in range(N):
        # If two values same already exist
        if A[i] in HashMap: return 0
        # Filling frequency HashMap
        else: HashMap[A[i]] = 1
     
    for i in range(N):
        # Removing occurrence of current
        # element from HashMap
        HashMap[A[i]] -= 1
         
        # Performing operation on
        # current index
        performOperation = A[i] & M
 
        # Check if another element exists
        # with same value
        if (HashMap[performOperation]): return 1
 
        # Inserting back occurrence
        # of element
        HashMap[A[i]] += 1
 
    # Clearing the HashMap
    HashMap = {}
    for i in range(N):
        # Performing operation on
        # current index
        performOperation = A[i] & M
 
        # Inserting this element
        # in Hashmap
        if performOperation in HashMap: HashMap[performOperation] += 1
        else: HashMap[performOperation] = 1
 
        # If two elements exist such that
        # both formed with operation
        if (HashMap[A[i]] == 2): return 2
 
    # If answer do not exist
    return -1
     
# Driver Code
 
# Input 1
A = [1, 2, 3, 7]
N = len(A)
X = 3
# Function Call
print(minOperations(A, N, X))
 
# Input 2
A1 = [1, 2, 3]
N1 = len(A1)
X1 = 7
# Function Call
print(minOperations(A1, N1, X1))


C#




//C# code to implement the approach
using System;
using System.Collections.Generic;
 
// Function to minimum operations required
// to make two elements equal in array.
class MainClass {
            
        public static int MinOperations(int[] A, int N, int M) {
        // Creating HashMap
        Dictionary<int, int> HashMap = new Dictionary<int, int>();
 
        for (int i = 0; i < N; i++)
        {
            // Filling frequency HashMap
            if (HashMap.ContainsKey(A[i]))
            {
                HashMap[A[i]]++;
            } else {
                HashMap.Add(A[i], 1);
            }
 
            // If two values same already exist
            if (HashMap[A[i]] >= 2)
            {
                return 0;
            }
        }
 
        for (int i = 0; i < N; i++)
        {
            // Removing occurrence of current element from HashMap
            HashMap[A[i]]--;
 
            // Performing operation on current index
            int performOperation = A[i] & M;
 
            // Check if another element exists with same value
            if (HashMap.ContainsKey(performOperation) &&
                HashMap[performOperation] > 0) {
                return 1;
            }
 
            // Inserting back occurrence of element
            HashMap[A[i]]++;
        }
 
        // Clearing the HashMap
        HashMap.Clear();
 
        for (int i = 0; i < N; i++)
        {
            // Performing operation on current index
            int performOperation = A[i] & M;
 
            // Inserting this element in Hashmap
            if (HashMap.ContainsKey(performOperation))
            {
                HashMap[performOperation]++;
            }
            else
            {
                HashMap.Add(performOperation, 1);
            }
 
            // If two elements exist such that both formed with operation
            if (HashMap[performOperation] == 2)
            {
                return 2;
            }
        }
 
        // If answer do not exist it will return -1
        return -1;
    }
     
   // Drive Code
    public static void Main(string[] args)
    {
        // Input 1
        int[] A = { 1, 2, 3, 7 };
        int N = A.Length;
        int X = 3;
 
        // Test Case 1 Function Call
         Console.WriteLine(MinOperations(A, N, X));
 
        // Input 2
         int[] A1 = { 1, 2, 3 };
         int N1 = A1.Length;
         int X1 = 7;
 
        // Test Case 2 Function Call
        Console.WriteLine(MinOperations(A1, N1, X1));
    }
}
 
// This Code is contributed by nikhilsainiofficial546


Javascript




// JavaScript code to implement the approach
function minOperations(A, N, M) {
  // Creating HashMap
  let HashMap = {};
 
  for (let i = 0; i < N; i++) {
    // Filling frequency HashMap
    if (HashMap[A[i]] === undefined) HashMap[A[i]] = 0;
    HashMap[A[i]]++;
 
    // If two values same already exist
    if (HashMap[A[i]] >= 2) return 0;
  }
 
  for (let i = 0; i < N; i++) {
    // Removing occurrence of current
    // element from HashMap
    HashMap[A[i]]--;
 
    // Performing operation on
    // current index
    let performOperation = A[i] & M;
 
    // Check if another element exists
    // with same value
    if (HashMap[performOperation]) return 1;
 
    // Inserting back occurrence
    // of element
    HashMap[A[i]]++;
  }
 
  // Clearing the HashMap
  HashMap = {};
 
  for (let i = 0; i < N; i++) {
    // Performing operation on
    // current index
    let performOperation = A[i] & M;
 
    // Inserting this element
    // in Hashmap
    if (HashMap[performOperation] === undefined) HashMap[performOperation] = 0;
    HashMap[performOperation]++;
 
    // If two elements exist such that
    // both formed with operation
    if (HashMap[A[i]] === 2) return 2;
  }
 
  // If answer do not exist
  return -1;
}
 
// Input 1
let A = [1, 2, 3, 7];
let N = A.length;
let X = 3;
 
// Function Call
console.log(minOperations(A, N, X));
 
// Input 2
let A1 = [1, 2, 3];
let N1 = A1.length;
let X1 = 7;
 
// Function Call
console.log(minOperations(A1, N1, X1));


Java




/*package whatever //do not write package name here */
import java.io.*;
import java.util.*;
  
class GFG {
    // Function to minimum operations required
    // to make two elements equal in array.
    static int minOperations(int A[], int N, int M)
    {
     
        // Creating HashMap
        Map<Integer, Integer> HashMap = new HashMap<Integer, Integer>();
 
     
        for (int i = 0; i < N; i++)
        {
     
            // Filling frequency HashMap
            if (HashMap.containsKey(A[i]))
                HashMap.put(A[i], HashMap.get(A[i]) + 1);
            else
                HashMap.put(A[i], 1);
 
            // If two values same already exist
            if (HashMap.get(A[i]) >= 2)
                return 0;
        }
     
        for (int i = 0; i < N; i++) {
     
            // Removing occurrence of current
            // element from HashMap
            if (HashMap.containsKey(A[i]))
                HashMap.put(A[i], HashMap.get(A[i]) - 1);
            else
                HashMap.put(A[i], 1);
     
            // Performing operation on
            // current index
            int performOperation = A[i] & M;
     
            // Check if another element exists
            // with same value
            if (HashMap.get(performOperation)>0)
                return 1;
     
            // Inserting back occurrence
            // of element
            if (HashMap.containsKey(A[i]))
                HashMap.put(A[i], HashMap.get(A[i]) + 1);
            else
                HashMap.put(A[i], 1);
        }
     
        // Clearing the HashMap
        HashMap.clear();
     
        for (int i = 0; i < N; i++) {
     
            // Performing operation on
            // current index
            int performOperation = A[i] & M;
     
            // Inserting this element
            // in Hashmap
            if (HashMap.containsKey(A[i]))
                HashMap.put(A[i], HashMap.get(A[i]) + 1);
            else
                HashMap.put(A[i], 1);
     
            // If two elements exist such that
            // both formed with operation
            if (HashMap.get(A[i]) == 2)
                return 2;
        }
     
        // If answer do not exist
        return -1;
    }
     
    // Driver Code
    public static void main(String args[])
    {
     
        // Input 1
        int A[] = { 1, 2, 3, 7 };
        int N = A.length;
        int X = 3;
     
        // Function Call
        System.out.println(minOperations(A, N, X));
     
        // Input 2
        int A1[] = { 1, 2, 3 };
        int N1 = A1.length;
        int X1 = 7;
     
        // Function Call
        System.out.println(minOperations(A1, N1, X1));
    }
}


Output

1
-1

Time Complexity: O(N*logN)  
Auxiliary Space: O(N)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
24 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments