Friday, September 5, 2025
HomeData Modelling & AIMinimum operations required to make all the array elements equal

Minimum operations required to make all the array elements equal

Given an array arr[] of n integer and an integer k. The task is to count the minimum number of times the given operation is required to make all the array elements equal. In a single operation, the kth element of the array is appended at the end of the array and the first element of the array gets deleted (the size of the array remains same). If the array elements cannot be made equal with this operation then print -1 else print the count of minimum operations required.

Examples: 

Input: arr[] = {2, 1, 1, 1, 1}, k = 3 
Output: 1 
Applying the operation 1st time 
3rd element in the array is 1 we append it to the end of the array and get arr[] = {2, 1, 1, 1, 1, 1} 
then we delete the 1st element and get arr[] = {1, 1, 1, 1, 1}

Input: arr[] = {1, 2, 3, 4}, k = 3 
Output: -1 

Approach: At each operation at first the kth element is copied to the end then the (k + 1)th element from the initial sequence is copied, then (k + 2)th and so on. So all the elements will become equal if and only if all the elements in the array starting from the kth element are equal. It’s now also obvious that the number of operations needed for it is equal to the index of the last number that is not equal to the nth element of the initial sequence

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include<bits/stdc++.h>
 
using namespace std;
 
    // Function to return the minimum number of
    // given operation required to make all the
    // array elements equal
    void minOperation(int n, int k, int a[])
    {
         
        // Check if all the elements
        // from kth index to last are equal
        for (int i = k; i < n; i++)
        {
            if(a[i] != a[k - 1])
                cout << (-1)<<endl;
        }
         
        // Finding the 1st element which is
        // not equal to the kth element
        for (int i = k - 2; i > -1; i--)
        {
            if(a[i] != a[k - 1])
                cout << (i + 1) << endl;
        }
    }
 
    // Driver code
    int main ()
    {
        int n = 5;
        int k = 3;
        int a[] = {2, 1, 1, 1, 1};
         
        minOperation(n, k, a);
    }
 
// This code is contributed by
// Surendra_Gangwar


Java




// Java implementation of the above approach
import java.io.*;
 
class GFG
{
         
    // Function to return the minimum number of
    // given operation required to make all the
    // array elements equal
    static void minOperation(int n, int k, int a[])
    {
         
        // Check if all the elements
        // from kth index to last are equal
        for (int i = k; i < n; i++)
        {
            if(a[i] != a[k - 1])
                System.out.println(-1);
        }
         
        // Finding the 1st element which is
        // not equal to the kth element
        for (int i = k - 2; i > -1; i--)
        {
            if(a[i] != a[k - 1])
                System.out.println(i + 1);
        }
    }
 
    // Driver code
    public static void main (String[] args)
    {
     
        int n = 5;
        int k = 3;
        int a[] = {2, 1, 1, 1, 1};
         
        minOperation(n, k, a);
    }
}
 
// This code is contributed by ajit.


Python




# Python3 implementation of the approach
 
# Function to return the minimum number of given operation
# required to make all the array elements equal
def minOperation(n, k, a):
     
    # Check if all the elements
    # from kth index to last are equal
    for i in range(k, n):
        if(a[i] != a[k - 1]):
            return -1
             
    # Finding the 1st element
    # which is not equal to the kth element
    for i in range(k-2, -1, -1):
        if(a[i] != a[k-1]):
            return i + 1
             
# Driver code
n = 5
k = 3
a = [2, 1, 1, 1, 1]
print(minOperation(n, k, a))


C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to return the minimum number of
    // given operation required to make all the
    // array elements equal
    static void minOperation(int n, int k, int []a)
    {
         
        // Check if all the elements
        // from kth index to last are equal
        for (int i = k; i < n; i++)
        {
            if(a[i] != a[k - 1])
                Console.WriteLine(-1);
             
        }
         
        // Finding the 1st element which is
        // not equal to the kth element
        for (int i = k - 2; i > -1; i--)
        {
            if(a[i] != a[k - 1])
                Console.WriteLine(i + 1);
        }
    }
 
    // Driver code
    static public void Main ()
    {
        int n = 5;
        int k = 3;
        int []a = {2, 1, 1, 1, 1};
         
        minOperation(n, k, a);
    }
}
 
// This code is contributed by Ryuga


PHP




<?php
// Php implementation of the approach
 
// Function to return the minimum number of
// given operation required to make all the
// array elements equal
function minOperation($n, $k, &$a)
{
     
    // Check if all the elements
    // from kth index to last are equal
    for ($i = $k; $i < $n; $i++)
    {
        if($a[$i] != $a[$k - 1])
            return -1;
    }
     
    // Finding the 1st element which is
    // not equal to the kth element
    for ($i = $k - 2; $i > -1; $i--)
    {
        if($a[$i] != $a[$k - 1])
            return ($i + 1);
    }
}
 
// Driver code
$n = 5;
$k = 3;
$a = array(2, 1, 1, 1, 1);
echo(minOperation($n, $k, $a));
 
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript




<script>
// javascript implementation of the above approach
 
    // Function to return the minimum number of
    // given operation required to make all the
    // array elements equal
    function minOperation(n, k, a)
    {
 
        // Check if all the elements
        // from kth index to last are equal
        for (i = k; i < n; i++)
        {
            if (a[i] != a[k - 1])
                document.write(-1);
        }
 
        // Finding the 1st element which is
        // not equal to the kth element
        for (i = k - 2; i > -1; i--)
        {
            if (a[i] != a[k - 1])
                document.write(i + 1);
        }
    }
 
    // Driver code
        var n = 5;
        var k = 3;
        var a = [ 2, 1, 1, 1, 1 ];
 
        minOperation(n, k, a);
 
// This code is contributed by Rajput-Ji
</script>


Output

1

Complexity Analysis:

  • Time Complexity : O(n – k + k) => O(n)
  • Auxiliary Space : O(1), since no extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32269 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6638 POSTS0 COMMENTS
Nicole Veronica
11802 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11866 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7027 POSTS0 COMMENTS
Thapelo Manthata
6704 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS