Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum number of Water to Land conversion to make two islands connected...

Minimum number of Water to Land conversion to make two islands connected in a Grid | Set 2

Given a 2D grid arr[][] of ‘W’ and ‘L’ where ‘W’ denotes water and ‘L’ denotes land, the task is to find the minimum number of water components ‘W’ that must be changed to land component ‘L’ so that two islands becomes connected.

An island is the set of connected ‘L’s

Note: There can be only two disjoint islands.

Examples:

Input: arr[][] = {{‘W’, ‘L’}, {‘L’, ‘W’}}; 
Output:
Explanation: For the given set of islands if we change arr[1][1] to ‘W’ 
then, set of all island are connected. 
Therefore, the minimum number of ‘W’ must be changed to ‘L’ is 1.

Input: arr[][] = {{‘W’, ‘L’, ‘W’}, {‘W’, ‘W’, ‘W’}, {‘W’, ‘W’, ‘L’}} 
Output: 2

 

Approach based on Floodfill algorithm: The approach based on Floodfill algorithm is discussed in Set-1 of this article.

Efficient Approach: This problem can be solved by using DFS and BFS algorithms. The idea is to use DFS to find all the land components of one island and simultaneously adding the bordering land components to queue which will be used in BFS to expand and find the shortest path to second island. Follow the steps mentioned below to solve the problem:

  • Use a nested loop to find the first occurrence of ‘L’ in arr[][].
  • Call DFS to find all the elements of this island and if any ‘L’  is a border element (i.e. surrounded by ‘W’ on at least one side) also add it in a queue.
  • Expand this island using BFS algorithm using the queue and visited array created during DFS call.
    • At each level increase the distance by 1.
    • By using BFS find the smallest path from border of one island to second island.
    • If the next component to be added in the queue is ‘L’, return the distance up till now.

Note: All elements of the first island can also be found using the BFS algorithm also.

Below is the implementation of the above approach:

C++




// C++ program to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// A class to represent point and dist from first island
class qNode {
public:
    int x, y, dist;
    qNode(int x, int y, int dist)
    {
        this->x = x;
        this->y = y;
        this->dist = dist;
    }
};
 
// Arrays to get the adjacent indices from one index of the
// grid
int dirx[4] = { 0, 1, 0, -1 };
int diry[4] = { 1, 0, -1, 0 };
 
// Global variables for size of array
int R, C;
 
// To check if indices are in matrix
bool isValid(int x, int y)
{
    if (x < 0 || y < 0 || x >= R || y >= C)
        return false;
    return true;
}
 
// Return true if surrounded by water in any of 4 direction
bool isBorder(int i, int j, vector<vector<char> >& arr)
{
    for (int idx = 0; idx < 4; idx++) {
        int x = i + dirx[idx];
        int y = j + diry[idx];
        if (isValid(x, y) && arr[x][y] == 'W')
            return true;
    }
    return false;
}
 
// Function to run DFS
void dfs(int i, int j, vector<vector<bool> >& visited,
         queue<qNode>& q, vector<vector<char> >& arr)
{
    visited[i][j] = true;
    // Checking if it is border component
    if (isBorder(i, j, arr)) {
        q.push(qNode(i, j, 0));
    }
 
    // Calling dfs in all 4 directions
    for (int idx = 0; idx < 4; idx++) {
        int x = i + dirx[idx];
        int y = j + diry[idx];
        if (isValid(x, y) && arr[x][y] == 'L'
            && !visited[x][y])
            dfs(x, y, visited, q, arr);
    }
}
 
// Function to implement BFS
int bfs(queue<qNode>& q, vector<vector<bool> >& visited,
        vector<vector<char> >& arr)
{
    while (q.size() > 0) {
        qNode p = q.front();
        q.pop();
        for (int idx = 0; idx < 4; idx++) {
            int x = p.x + dirx[idx];
            int y = p.y + diry[idx];
 
            // If next unvisited component
            // is land, return dist
            // till of p only
            if (isValid(x, y) && arr[x][y] == 'L'
                && !visited[x][y]) {
                return p.dist;
            }
 
            if (isValid(x, y) && arr[x][y] == 'W'
                && !visited[x][y]) {
                q.push(qNode(x, y, 1 + p.dist));
                visited[x][y] = true;
            }
        }
    }
    return -1;
}
 
// Function to find minimum conversions
int minConversions(vector<vector<char> >& arr)
{
    R = arr.size();
    C = arr[0].size();
 
    // Queue to be used in bfs
    queue<qNode> q;
    vector<vector<bool> > visited(R,
                                  vector<bool>(C, false));
    bool flag = false;
    for (int i = 0; i < R; i++) {
        for (int j = 0; j < C; j++) {
            if (arr[i][j] == 'L') {
                // Visited first island completely and at
                // same time maintaining visited array and
                // queue
                dfs(i, j, visited, q, arr);
                flag = true;
                break;
            }
        }
 
        // Breaking the nested loop once first island found
        if (flag)
            break;
    }
 
    return bfs(q, visited, arr);
}
 
// Driver code
int main()
{
    // Creating the Grid
    vector<vector<char> > arr = { { 'W', 'L', 'W' },
                                  { 'W', 'W', 'W' },
                                  { 'W', 'W', 'L' } };
 
    // Function call
    cout << minConversions(arr);
    return 0;
}
 
// This code is contributed by abhishekghoshindia.


Java




// Java program to implement the approach
import java.util.*;
 
public class GFG {
    static int R;
    static int C;
 
    // A class to represent point and
    // dist from first island
    static class qNode {
        int x;
        int y;
        int dist;
        qNode(int x, int y, int d)
        {
            this.x = x;
            this.y = y;
            this.dist = d;
        }
    }
 
    // Function to find minimum conversions
    static int minConversions(char[][] arr)
    {
        R = arr.length;
        C = arr[0].length;
 
        // Queue to be used in bfs
        Queue<qNode> q = new ArrayDeque<>();
        boolean[][] visited
            = new boolean[R][C];
        boolean flag = false;
        for (int i = 0; i < R; i++) {
            for (int j = 0; j < C; j++) {
                if (arr[i][j] == 'L') {
 
                    // Visited first island
                    // completely and at
                    // same time maintaining
                    // visited array and queue
                    dfs(i, j, visited, q, arr);
                    flag = true;
                    break;
                }
            }
 
            // Breaking the nested loop
            // once first island found
            if (flag)
                break;
        }
 
        return bfs(q, visited, arr);
    }
 
    // Arrays to get the adjacent indices
    // from one index of thegrid
    static int[] dirx = { 0, 1, 0, -1 };
    static int[] diry = { 1, 0, -1, 0 };
 
    // Function to run DFS
    static void dfs(int i, int j,
                    boolean[][] visited,
                    Queue<qNode> q,
                    char[][] arr)
    {
        visited[i][j] = true;
 
        // Checking if it is border component
        if (isBorder(i, j, arr)) {
            q.add(new qNode(i, j, 0));
        }
 
        // Calling dfs in all 4 directions
        for (int idx = 0; idx < 4; idx++) {
            int x = i + dirx[idx];
            int y = j + diry[idx];
 
            if (isValid(x, y)
                && arr[x][y] == 'L'
                && !visited[x][y]) {
                dfs(x, y, visited, q, arr);
            }
        }
    }
 
    // Return true if surrounded by water
    // in any of 4 direction
    static boolean isBorder(int i, int j,
                            char[][] arr)
    {
        for (int idx = 0; idx < 4; idx++) {
            int x = i + dirx[idx];
            int y = j + diry[idx];
            if (isValid(x, y)
                && arr[x][y] == 'W')
                return true;
        }
        return false;
    }
 
    // Function to implement BFS
    static int bfs(Queue<qNode> q,
                   boolean[][] visited,
                   char[][] arr)
    {
 
        while (q.size() > 0) {
            qNode p = q.remove();
 
            for (int idx = 0; idx < 4;
                 idx++) {
                int x = p.x + dirx[idx];
                int y = p.y + diry[idx];
 
                // If next unvisited component
                // is land, return dist
                // till of p only
                if (isValid(x, y)
                    && arr[x][y] == 'L'
                    && !visited[x][y]) {
                    return p.dist;
                }
                if (isValid(x, y)
                    && arr[x][y] == 'W'
                    && !visited[x][y]) {
 
                    q.add(new qNode(x, y,
                                    p.dist + 1));
                    visited[x][y] = true;
                }
            }
        }
        return -1;
    }
 
    // To check if indices are in matrix
    static boolean isValid(int x, int y)
    {
        if (x < 0 || y < 0
            || x >= R || y >= C)
            return false;
        return true;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        char[][] arr = { { 'W', 'L', 'W' },
                         { 'W', 'W', 'W' },
                         { 'W', 'W', 'L' } };
 
        // Function call
        int ans = minConversions(arr);
        System.out.println(ans);
    }
}


C#




// C# program to implement the approach
using System;
using System.Collections.Generic;
 
public class GFG {
  static int R;
  static int C;
 
  // A class to represent point and
  // dist from first island
  class qNode {
    public int x;
    public int y;
    public int dist;
    public qNode(int x, int y, int d)
    {
      this.x = x;
      this.y = y;
      this.dist = d;
    }
  }
 
  // Function to find minimum conversions
  static int minConversions(char[,] arr)
  {
    R = arr.Length;
    C = arr.GetLength(0);
 
    // Queue to be used in bfs
    Queue<qNode> q = new Queue<qNode>();
    bool[,] visited
      = new bool[R,C];
    bool flag = false;
    for (int i = 0; i < R; i++) {
      for (int j = 0; j < C; j++) {
        if (arr[i,j] == 'L') {
 
          // Visited first island
          // completely and at
          // same time maintaining
          // visited array and queue
          dfs(i, j, visited, q, arr);
          flag = true;
          break;
        }
      }
 
      // Breaking the nested loop
      // once first island found
      if (flag)
        break;
    }
 
    return bfs(q, visited, arr);
  }
 
  // Arrays to get the adjacent indices
  // from one index of thegrid
  static int[] dirx = { 0, 1, 0, -1 };
  static int[] diry = { 1, 0, -1, 0 };
 
  // Function to run DFS
  static void dfs(int i, int j,
                  bool[,] visited,
                  Queue<qNode> q,
                  char[,] arr)
  {
    visited[i,j] = true;
 
    // Checking if it is border component
    if (isBorder(i, j, arr)) {
      q.Enqueue(new qNode(i, j, 0));
    }
 
    // Calling dfs in all 4 directions
    for (int idx = 0; idx < 4; idx++) {
      int x = i + dirx[idx];
      int y = j + diry[idx];
 
      if (isValid(x, y)
          && arr[x,y] == 'L'
          && !visited[x,y]) {
        dfs(x, y, visited, q, arr);
      }
    }
  }
 
  // Return true if surrounded by water
  // in any of 4 direction
  static bool isBorder(int i, int j,
                       char[,] arr)
  {
    for (int idx = 0; idx < 4; idx++) {
      int x = i + dirx[idx];
      int y = j + diry[idx];
      if (isValid(x, y)
          && arr[x,y] == 'W')
        return true;
    }
    return false;
  }
 
  // Function to implement BFS
  static int bfs(Queue<qNode> q,
                 bool[,] visited,
                 char[,] arr)
  {
 
    while (q.Count > 0) {
      qNode p = q.Dequeue();
 
      for (int idx = 0; idx < 4;
           idx++) {
        int x = p.x + dirx[idx];
        int y = p.y + diry[idx];
 
        // If next unvisited component
        // is land, return dist
        // till of p only
        if (isValid(x, y)
            && arr[x,y] == 'L'
            && !visited[x,y]) {
          return p.dist;
        }
        if (isValid(x, y)
            && arr[x,y] == 'W'
            && !visited[x,y]) {
 
          q.Enqueue(new qNode(x, y,
                              p.dist + 1));
          visited[x,y] = true;
        }
      }
    }
    return -1;
  }
 
  // To check if indices are in matrix
  static bool isValid(int x, int y)
  {
    if (x < 0 || y < 0
        || x >= R || y >= C)
      return false;
    return true;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    char[,] arr = { { 'W', 'L', 'W' },
                   { 'W', 'W', 'W' },
                   { 'W', 'W', 'L' } };
 
    // Function call
    int ans = minConversions(arr);
    Console.WriteLine(ans);
  }
}
 
// This code is contributed by shikhasingrajput


Python3




from collections import deque
 
#A class to represent point and dist from first island
class qNode:
    def __init__(self, x, y, dist):
        self.x = x
        self.y = y
        self.dist = dist
 
dirx = [0, 1, 0, -1]
diry = [1, 0, -1, 0]
R = 0
C = 0
 
def isValid(x, y):
    if x < 0 or y < 0 or x >= R or y >= C:
        return False
    return True
 
def isBorder(i, j, arr):
    for idx in range(4):
        x = i + dirx[idx]
        y = j + diry[idx]
        if isValid(x, y) and arr[x][y] == 'W':
            return True
    return False
 
def dfs(i, j, visited, q, arr):
    visited[i][j] = True
    if isBorder(i, j, arr):
        q.append(qNode(i, j, 0))
 
    for idx in range(4):
        x = i + dirx[idx]
        y = j + diry[idx]
        if isValid(x, y) and arr[x][y] == 'L' and not visited[x][y]:
            dfs(x, y, visited, q, arr)
 
def bfs(q, visited, arr):
    while q:
        p = q.popleft()
        for idx in range(4):
            x = p.x + dirx[idx]
            y = p.y + diry[idx]
 #If next unvisited component is land, return dist till of p only
            if isValid(x, y) and arr[x][y] == 'L' and not visited[x][y]:
                return p.dist
 
            if isValid(x, y) and arr[x][y] == 'W' and not visited[x][y]:
                q.append(qNode(x, y, 1 + p.dist))
                visited[x][y] = True
    return -1
 
def minConversions(arr):
    global R, C
    R = len(arr)
    C = len(arr[0])
 
    q = deque()
    visited = [[False for j in range(C)] for i in range(R)]
    flag = False
    for i in range(R):
        for j in range(C):
           #Visited first island completely and at
           # same time maintaining visited array and queue
            if arr[i][j] == 'L':
                dfs(i, j, visited, q, arr)
                flag = True
                break
 
        if flag:
            break
 
    return bfs(q, visited, arr)
#Creating the Grid
arr = [['W', 'L', 'W'],
       ['W', 'W', 'W'],
       ['W', 'W', 'L']]
 
print(minConversions(arr))


Javascript




class qNode {
    constructor(x, y, dist) {
        this.x = x;
        this.y = y;
        this.dist = dist;
    }
}
 
const dirx = [0, 1, 0, -1];
const diry = [1, 0, -1, 0];
let R = 0;
let C = 0;
 
function isValid(x, y) {
    if (x < 0 || y < 0 || x >= R || y >= C) {
        return false;
    }
    return true;
}
 
function isBorder(i, j, arr) {
    for (let idx = 0; idx < 4; idx++) {
        const x = i + dirx[idx];
        const y = j + diry[idx];
        if (isValid(x, y) && arr[x][y] === 'W') {
            return true;
        }
    }
    return false;
}
 
function dfs(i, j, visited, q, arr) {
    visited[i][j] = true;
    if (isBorder(i, j, arr)) {
        q.push(new qNode(i, j, 0));
    }
    for (let idx = 0; idx < 4; idx++) {
        const x = i + dirx[idx];
        const y = j + diry[idx];
        if (isValid(x, y) && arr[x][y] === 'L' && !visited[x][y]) {
            dfs(x, y, visited, q, arr);
        }
    }
}
 
function bfs(q, visited, arr) {
    while (q.length > 0) {
        const p = q.shift();
        for (let idx = 0; idx < 4; idx++) {
            const x = p.x + dirx[idx];
            const y = p.y + diry[idx];
            if (isValid(x, y) && arr[x][y] === 'L' && !visited[x][y]) {
                return p.dist;
            }
            if (isValid(x, y) && arr[x][y] === 'W' && !visited[x][y]) {
                q.push(new qNode(x, y, p.dist + 1));
                visited[x][y] = true;
            }
        }
    }
    return -1;
}
 
function minConversions(arr) {
    R = arr.length;
    C = arr[0].length;
    const q = [];
    const visited = Array(R).fill().map(() => Array(C).fill(false));
    let flag = false;
    for (let i = 0; i < R; i++) {
        for (let j = 0; j < C; j++) {
            if (arr[i][j] === 'L') {
                dfs(i, j, visited, q, arr);
                flag = true;
                break;
            }
        }
        if (flag) {
            break;
        }
    }
    return bfs(q, visited, arr);
}
 
const arr = [['W', 'L', 'W'], ['W', 'W', 'W'], ['W', 'W', 'L']];
console.log(minConversions(arr));
 
// This code is contributed by Prince Kumar


Output

2

Time Complexity: O(N2), since we are using two nested loops to travel every cell thus the complexity of the algorithm is quadratic
Auxiliary Space: O(N2), since we are creating an extra visited array of size R*C

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments