Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum number of steps to convert a given matrix into Upper...

Minimum number of steps to convert a given matrix into Upper Hessenberg matrix

Given a matrix of order NxN, Find the minimum number of steps to convert the given matrix into the Upper Hessenberg matrix. In each step, the only operation allowed is to decrease or increase any element value by 1.
Examples:

Input : N=3 
1 2 8 
1 3 4 
2 3 4 
Output :
Decrease the element a[2][0] 2 times. 
Now the matrix is upper hessenberg
Input : N=4 
1 2 2 3 
1 3 4 2 
3 3 4 2 
-1 0 1 4 
Output :4  

Approach:  

  • For a matrix to be an Upper Hessenberg matrix all of its elements below the sub-diagonal must be equal to zero, i.e Aij = 0 for all i > j+1..
  • The minimum number of steps required to convert a given matrix in the upper Hessenberg matrix is equal to the sum of the absolute values of all Aij for all i > j + 1.
  • The modulus value of the element is taken into account because both the increase and decrease of the element count as a single step.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
#define N 4
using namespace std;
 
// Function to count steps in
// conversion of matrix into upper
// Hessenberg matrix
int stepsRequired(int arr[][N])
{
    int result = 0;
    for (int i = 0; i < N; i++) {
 
        for (int j = 0; j < N; j++) {
 
            // if element is below sub-diagonal
            // add abs(element) into result
            if (i > j + 1)
                result += abs(arr[i][j]);
        }
    }
    return result;
}
 
// Driver code
int main()
{
    int arr[N][N] = { 1, 2, 3, 4,
                      3, 1, 0, 3,
                      3, 2, 1, 3,
                     -3, 4, 2, 1 };
 
    // Function call
    cout << stepsRequired(arr);
    return 0;
}


Java




// Java implementation of above approach
class GFG
{
     
    static int N = 4;
     
    // Function to count steps in
    // conversion of matrix into upper
    // Hessenberg matrix
    static int stepsRequired(int arr[][])
    {
        int result = 0;
        for (int i = 0; i < N; i++)
        {
     
            for (int j = 0; j < N; j++)
            {
     
                // if element is below sub-diagonal
                // add abs(element) into result
                if (i > j + 1)
                    result += Math.abs(arr[i][j]);
            }
        }
        return result;
    }
     
    // Driver code
    public static void main (String[] args)
    {
         
        int arr [][] = new int [][] {{1, 2, 3, 4},
                        {3, 1, 0, 3},
                        {3, 2, 1, 3},
                        {-3, 4, 2, 1 }};
     
        // Function call
        System.out.println(stepsRequired(arr));
    }
}
 
// This code is contributed by ihritik


Python3




# Python3 implementation of above approach
N = 4;
 
# Function to count steps in
# conversion of matrix into upper
# Hessenberg matrix
def stepsRequired(arr):
    result = 0;
    for i in range(N):
 
        for j in range(N):
 
            # if element is below sub-diagonal
            # add abs(element) into result
            if (i > j + 1):
                result += abs(arr[i][j]);
 
    return result;
 
# Driver code
arr =   [[1, 2, 3, 4],
         [3, 1, 0, 3],
         [3, 2, 1, 3],
         [-3, 4, 2, 1]];
 
# Function call
print(stepsRequired(arr));
 
# This code is contributed by Rajput-Ji


C#




// C# implementation of above approach
using System;
 
class GFG
{
     
    static int N = 4;
     
    // Function to count steps in
    // conversion of matrix into upper
    // Hessenberg matrix
    static int stepsRequired(int [, ] arr)
    {
        int result = 0;
        for (int i = 0; i < N; i++)
        {
     
            for (int j = 0; j < N; j++)
            {
     
                // if element is below sub-diagonal
                // add abs(element) into result
                if (i > j + 1)
                    result += Math.Abs(arr[i, j]);
            }
        }
        return result;
    }
     
    // Driver code
    public static void Main ()
    {
         
        int [ , ] arr = new int [, ] { {1, 2, 3, 4},
                        {3, 1, 0, 3},
                        {3, 2, 1, 3},
                        {-3, 4, 2, 1}};
     
        // Function call
        Console.WriteLine(stepsRequired(arr));
     
    }
}
 
// This code is contributed by ihritik


Javascript




<script>
// Java script implementation of above approach
let N = 4;
     
    // Function to count steps in
    // conversion of matrix into upper
    // Hessenberg matrix
    function stepsRequired(arr)
    {
        let result = 0;
        for (let i = 0; i < N; i++)
        {
     
            for (let j = 0; j < N; j++)
            {
     
                // if element is below sub-diagonal
                // add abs(element) into result
                if (i > j + 1)
                    result += Math.abs(arr[i][j]);
            }
        }
        return result;
    }
     
    // Driver code   
        let arr =[[1, 2, 3, 4],
                        [3, 1, 0, 3],
                        [3, 2, 1, 3],
                        [-3, 4, 2, 1 ]];
     
        // Function call
        document.write(stepsRequired(arr));
 
// This code is contributed by mohan pavan
 
</script>


Output: 

10

 

Time complexity : O(N*N)
Auxiliary space: O(1) because it is using constant space for variables

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments