Thursday, September 4, 2025
HomeData Modelling & AIMinimum number of squares whose sum equals to a given number N...

Minimum number of squares whose sum equals to a given number N | Set-3

A number can always be represented as a sum of squares of other numbers. Note that 1 is a square, and we can always break a number as (1*1 + 1*1 + 1*1 + …). Given a number n, find the minimum number of squares that sum to N.

Examples:

Input: N = 13 
Output:
Explanation: 
13 can be expressed as, 13 = 32 + 22. Hence, the output is 2.

Input: N = 100 
Output:
Explanation: 
100 can be expressed as 100 = 102. Hence, the output is 1.

 

Naive Approach: For [O(N*sqrt(N))] approach, please refer to Set 2 of this article.

Efficient Approach: To optimize the naive approach the idea is to use Lagrange’s Four-Square Theorem and Legendre’s Three-Square Theorem. The two theorems are discussed below: 

Lagrange’s four-square theorem, also known as Bachet’s conjecture, states that every natural number can be represented as the sum of four integer squares, where each integer is non-negative. 

Legendre’s three-square theorem states that a natural number can be represented as the sum of three squares of integers if and only if n is not of the form : n = 4a (8b+7), for non-negative integers a and b

Therefore, it is proved that the minimum number of squares to represent any number N can only be within the set {1, 2, 3, 4}. Thus, only checking for these 4 possible values, the minimum number of squares to represent any number N can be found. Follow the steps below:

  • If N is a perfect square, then the result is 1.
  • If N can be expressed as the sum of two squares, then the result is 2.
  • If N cannot be expressed in the form of N = 4a (8b+7), where a and b are non-negative integers, then the result is 3 by Legendre’s three-square theorem. 
  • If all the above conditions are not satisfied, then by Lagrange’s four-square theorem, the result is 4.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if N
// is a perfect square
bool isPerfectSquare(int N)
{
    int floorSqrt = sqrt(N);
 
    return (N == floorSqrt * floorSqrt);
}
 
// Function that returns true check if
// N is sum of three squares
bool legendreFunction(int N)
{
    // Factor out the powers of 4
    while (N % 4 == 0)
        N /= 4;
 
    // N is NOT of the
    // form 4^a * (8b + 7)
    if (N % 8 != 7)
        return true;
    else
        return false;
}
 
// Function that finds the minimum
// number of square whose sum is N
int minSquares(int N)
{
 
    // If N is perfect square
    if (isPerfectSquare(N))
        return 1;
 
    // If N is sum of 2 perfect squares
    for (int i = 1; i * i < N; i++) {
        if (isPerfectSquare(N - i * i))
            return 2;
    }
 
    // If N is sum of 3 perfect squares
    if (legendreFunction(N))
        return 3;
 
    // Otherwise, N is the
    // sum of 4 perfect squares
    return 4;
}
 
// Driver code
int main()
{
    // Given number
    int N = 123;
 
    // Function call
    cout << minSquares(N);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function that returns true if N
// is a perfect square
static boolean isPerfectSquare(int N)
{
    int floorSqrt = (int)Math.sqrt(N);
 
    return (N == floorSqrt * floorSqrt);
}
 
// Function that returns true check if
// N is sum of three squares
static boolean legendreFunction(int N)
{
     
    // Factor out the powers of 4
    while (N % 4 == 0)
        N /= 4;
 
    // N is NOT of the
    // form 4^a * (8b + 7)
    if (N % 8 != 7)
        return true;
    else
        return false;
}
 
// Function that finds the minimum
// number of square whose sum is N
static int minSquares(int N)
{
 
    // If N is perfect square
    if (isPerfectSquare(N))
        return 1;
 
    // If N is sum of 2 perfect squares
    for(int i = 1; i * i < N; i++)
    {
        if (isPerfectSquare(N - i * i))
            return 2;
    }
 
    // If N is sum of 3 perfect squares
    if (legendreFunction(N))
        return 3;
 
    // Otherwise, N is the
    // sum of 4 perfect squares
    return 4;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given number
    int N = 123;
 
    // Function call
    System.out.print(minSquares(N));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program for the above approach
from math import sqrt, floor, ceil
 
# Function that returns True if N
# is a perfect square
def isPerfectSquare(N):
   
    floorSqrt = floor(sqrt(N))
    return (N == floorSqrt * floorSqrt)
   
# Function that returns True check if
# N is sum of three squares
def legendreFunction(N):
   
    # Factor out the powers of 4
    while (N % 4 == 0):
        N //= 4
 
    # N is NOT of the
    # form 4^a * (8b + 7)
    if (N % 8 != 7):
        return True
    else:
        return False
 
# Function that finds the minimum
# number of square whose sum is N
def minSquares(N):
   
    # If N is perfect square
    if (isPerfectSquare(N)):
        return 1
 
    # If N is sum of 2 perfect squares
    for i in range(N):
        if i * i < N:
            break
        if (isPerfectSquare(N - i * i)):
            return 2
           
    # If N is sum of 3 perfect squares
    if (legendreFunction(N)):
        return 3
       
    # Otherwise, N is the
    # sum of 4 perfect squares
    return 4
   
# Driver code
if __name__ == '__main__':
 
    # Given number
    N = 123
 
    # Function call
    print(minSquares(N))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function that returns true if N
// is a perfect square
static bool isPerfectSquare(int N)
{
    int floorSqrt = (int)Math.Sqrt(N);
 
    return (N == floorSqrt * floorSqrt);
}
 
// Function that returns true check
// if N is sum of three squares
static bool legendreFunction(int N)
{
     
    // Factor out the powers of 4
    while (N % 4 == 0)
        N /= 4;
 
    // N is NOT of the
    // form 4^a * (8b + 7)
    if (N % 8 != 7)
        return true;
    else
        return false;
}
 
// Function that finds the minimum
// number of square whose sum is N
static int minSquares(int N)
{
 
    // If N is perfect square
    if (isPerfectSquare(N))
        return 1;
 
    // If N is sum of 2 perfect squares
    for(int i = 1; i * i < N; i++)
    {
        if (isPerfectSquare(N - i * i))
            return 2;
    }
 
    // If N is sum of 3 perfect squares
    if (legendreFunction(N))
        return 3;
 
    // Otherwise, N is the
    // sum of 4 perfect squares
    return 4;
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Given number
    int N = 123;
 
    // Function call
    Console.Write(minSquares(N));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program for the above approach
 
// Function that returns true if N
// is a perfect square
function isPerfectSquare(N)
{
    let floorSqrt = Math.floor(Math.sqrt(N));
   
    return (N == floorSqrt * floorSqrt);
}
   
// Function that returns true check if
// N is sum of three squares
function legendreFunction(N)
{
       
    // Factor out the powers of 4
    while (N % 4 == 0)
        N = Math.floor(N / 4);
   
    // N is NOT of the
    // form 4^a * (8b + 7)
    if (N % 8 != 7)
        return true;
    else
        return false;
}
   
// Function that finds the minimum
// number of square whose sum is N
function minSquares(N)
{
   
    // If N is perfect square
    if (isPerfectSquare(N))
        return 1;
   
    // If N is sum of 2 perfect squares
    for(let i = 1; i * i < N; i++)
    {
        if (isPerfectSquare(N - i * i))
            return 2;
    }
   
    // If N is sum of 3 perfect squares
    if (legendreFunction(N))
        return 3;
   
    // Otherwise, N is the
    // sum of 4 perfect squares
    return 4;
}
 
// Driver Code
 
    // Given number
    let N = 123;
   
    // Function call
    document.write(minSquares(N));
 
</script>


Output: 

3

Time Complexity: O(sqrt(N))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32263 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6627 POSTS0 COMMENTS
Nicole Veronica
11799 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11858 POSTS0 COMMENTS
Shaida Kate Naidoo
6749 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6696 POSTS0 COMMENTS
Umr Jansen
6716 POSTS0 COMMENTS