Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMinimum number of lines needed to cross to reach at origin

Minimum number of lines needed to cross to reach at origin

Given N number of integers in sorted format, where each integer Ai for all(1 ? i ? N), denotes the join of two points (0, Ai) and (Ai, 0) and forms a line by joining these two points, also given Q number of coordinates in form of (X, Y) in the first Quadrant. Return the minimum number of lines needed to cross to reach the origin from (X, Y) in each query. if (X, Y) lies on any of the lines, return -1 as output.

Examples:

Input: N = 2, Points[] = {1, 2}, Q = 1, X = 3, Y = 2
Output: 2
Explanation: 

Explanation of Input case 1 

There is only one query, In which the point is (2, 3), It can be verified that for reaching origin given point need to cross 2 lines.  

Input: N = 3, Points[] = {1, 2, 5}, Q = 3
X = 0, Y = 0
X = 1, Y = 1
X = 4, Y = 3
Output: 

-1
3
Explanation:    

Explanation of Input case 2

  • Query 1:
    • (X, Y) are (0, 0), Point is already present at origin, Therefore, no need to cross any line, Output is 0.
  • Query 2:
    • Given point is (1, 1), Which is present at line joining points (0, 2) and (2, 0). Hence the output is -1, because point is on line. 
  • Query 3:  
    • Given point is (3, 4), It can be verified that for reaching origin, We need to cross 3 lines.Hence the output is 3

Approach: Implement the idea below to solve the problem

The problem is observation based and can be solved by using TreeSet and HashMap. For more clarification of problem see the Concept of approach section below. Using data structure like TreeSet and Map reduces complexity very much.   

Concept of approach:

The problem is observation based. There are some points, Which are needed to follow to solve the problem:

  • Condition when point lies on any line:
    • It should be noted that only those co-ordinates (X, Y) will lie on a line, Whom sum of X and Y co-ordinate is equal to starting of ending point of line. For checking this condition, We will check if HashMap contains (X+Y) or not. If contains then print -1 as output.
  • When point doesn’t lie on any line:
    • In such condition, Get a floor value of (X+Y) from TreeSet, Formally set.floor(X, Y) and store it in a variable let say floor, If floor is null then print zero else get index of floor, Formally map.get(Floor) from HashMap and store it in the variable let say Index.and print (index+1) as output.    

Steps were taken to solve the problem:

  • Create TreeSet<Integer> and HashMap<long, Integer> to store values present in Points[]. 
  • Initialize TreeSet with elements of Points[] and HashMap with elements of points along with their index.
  • Run a loop for 1 to Q times and follow the below-mentioned steps under the scope of the loop:
    • Create a Sum variable and initialize it with (X+Y).
      • If HashMap contains Sum, then print -1 as output.
      • else get set.floor(Sum) from TreeSet, Then get its index from the map and print it as output.   

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find lines crossed by the point
void minimumLines(int N, int points[], int Q,
                  int X_coordinate[], int Y_coordinate[])
{
 
    // TreeSet for storing points
    set<int> set;
 
    // HashMap for storing points and their index
    unordered_map<int, int> hash;
 
    // Loop for initializing TreeSet and HashMap
    for (int i = 0; i < N; i++) {
        int val = points[i];
        set.insert(val);
        hash[val] = i;
    }
 
    // Loop for number of times Query asked
    for (int i = 0; i < Q; i++) {
        // X coordinate
        int x = X_coordinate[i];
 
        // Y coordinate
        int y = Y_coordinate[i];
 
        // Sum of both coordinates
        long sum = x + y;
 
        // Variable to store minimum number of
        // lines
        int ans = 0;
 
        // Checking if sum exists in HashMap or not
        if (hash[sum]) {
 
            // Printing -1 as output.
            ans = -1;
            cout << (ans) << endl;
            continue;
        }
 
        // Checking floor value of sum
 
        auto floor = --set.upper_bound(sum);
 
        // Printing number of lines needed
        // to cross by getting floor value
        // of sum
        if (floor != set.end()) {
            int ind = hash[*floor];
            ans = ind + 1;
        }
        cout << ans << endl;
    }
}
 
// Driver Code
int main()
{
 
    int N = 3;
    int points[] = { 1, 2, 5 };
    int Q = 3;
 
    // X and Y coordinates of Q queries
    // formally Q number of (X, Y) points
    int X_coordinate[] = { 0, 1, 3 };
    int Y_coordinate[] = { 0, 1, 4 };
 
    // Function call
    minimumLines(N, points, Q, X_coordinate, Y_coordinate);
}
 
// This code is contributed by Pushpesh Raj.


Java




// Java code to implement the approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
public class GFG {
 
    // Driver Code
    public static void main(String[] args)
        throws java.lang.Exception
    {
 
        int N = 3;
        int[] points = { 1, 2, 5 };
        int Q = 3;
 
        // X and Y coordinates of Q queries
        // formally Q number of (X, Y) points
        int[] X_coordinate = { 0, 1, 3 };
        int[] Y_coordinate = { 0, 1, 4 };
 
        // Function call
        minimumLines(N, points, Q, X_coordinate,
                     Y_coordinate);
    }
 
    // Function to find lines crossed by the point
    public static void minimumLines(int N, int points[],
                                    int Q,
                                    int X_coordinate[],
                                    int Y_coordinate[])
    {
 
        // TreeSet for storing points
        TreeSet<Long> set = new TreeSet<>();
 
        // HashMap for storing points and their index
        Map<Long, Integer> hash = new HashMap<>();
 
        // Loop for initializing TreeSet and HashMap
        for (int i = 0; i < N; i++) {
            long val = points[i];
            set.add(val);
            hash.put(val, i);
        }
 
        // Loop for number of times Query asked
        for (int i = 0; i < Q; i++) {
            // X coordinate
            int x = X_coordinate[i];
 
            // Y coordinate
            int y = Y_coordinate[i];
 
            // Sum of both coordinates
            long sum = x + y;
 
            // Variable to store minimum number of
            // lines
            int ans = 0;
 
            // Checking if sum exists in HashMap or not
            if (hash.containsKey(sum)) {
 
                // Printing -1 as output.
                ans = -1;
                System.out.println(ans);
                continue;
            }
 
            // Checking floor value of sum
            Long floor = set.floor(sum);
 
            // Printing number of lines needed
            // to cross by getting floor value
            // of sum
            if (floor != null) {
                int ind = hash.get(floor);
                ans = ind + 1;
            }
            System.out.println(ans);
        }
    }
}


Python3




# Python code to implement the approach
import bisect
 
# Driver Code
 
 
def main():
    N = 3
    points = [1, 2, 5]
    Q = 3
 
    # X and Y coordinates of Q queries
    # formally Q number of (X, Y) points
    X_coordinate = [0, 1, 3]
    Y_coordinate = [0, 1, 4]
 
    # Function call
    minimumLines(N, points, Q, X_coordinate,
                 Y_coordinate)
 
# Function to find lines crossed by the point
 
 
def minimumLines(N, points, Q, X_coordinate, Y_coordinate):
 
    # Set for storing points
    Set = set()
 
    # Dictionary for storing points and their index
    hash = {}
 
    # Loop for initializing Set and Dictionary
    for i in range(N):
        val = points[i]
        Set.add(val)
        hash[val] = i
 
    # Loop for number of times Query asked
    for i in range(Q):
        # X coordinate
        x = X_coordinate[i]
 
        # Y coordinat
        y = Y_coordinate[i]
 
        # Sum of both coordinates
        Sum = x + y
 
        # Variable to store minimum number of
        # lines
        ans = 0
 
        # Checking if Sum exists in HashMap or not
        if (Sum in hash):
            # Printing -1 as output.
            ans = -1
            print(ans)
            continue
 
        # Checking floor value of Sum
        floor, val = lowerBound(Set, Sum)
 
        # Printing number of lines needed
        # to cross by getting floor value
        # of Sum
        if (floor >= 0):
            ind = hash.get(val)
            ans = ind + 1
 
        print(ans)
 
 
def lowerBound(Set, Sum):
    lb = -1
    Set = list(Set)
    Set.sort()
 
    for val in Set:
        if val < Sum:
            lb += 1
        else:
            break
    return lb, Set[lb] if lb >= 0 else -1
 
 
if __name__ == "__main__":
    main()
 
# This code is contributed by shubhamsingh


Javascript




// Javascript code to implement the approach
 
// Function to find lines crossed by the point
function minimumLines(N, points, Q, X_coordinate, Y_coordinate)
{
 
    // TreeSet for storing points
    let set = new Set();
 
    // HashMap for storing points and their index
    hash = {};
 
    // Loop for initializing TreeSet and HashMap
    for(let i = 0; i < N; i++)
    {
        let val = points[i];
        set.add(val);
        hash[val] = i;
    }
 
    // Loop for number of times Query asked
    for (let i = 0; i < Q; i++) {
        // X coordinate
        x = X_coordinate[i];
 
        // Y coordinate
        y = Y_coordinate[i];
 
        // Sum of both coordinates
        sum = x + y;
 
        // Variable to store minimum number of
        // lines
        ans = 0;
 
        // Checking if sum exists in HashMap or not
        if (hash[sum]) {
 
            // Printing -1 as output.
            ans = -1;
            console.log(ans);
            continue;
        }
 
        // Checking floor value of sum
        let [floor, val] = lowerBound(set, sum)
         
        // Printing number of lines needed
        // to cross by getting floor value
        // of sum
        if (floor >= 0){
            ind = hash[val]
            ans = ind + 1
        }
 
        console.log(ans);
    }
}
 
function lowerBound(Set, Sum)
{
    lb = -1
    Set = [...Set].sort()
 
    for (let val in Set){
        if (val < Sum){
            lb += 1
        }
        else{
            break
        }
    }
    return [lb, lb >=0 ? Set[lb] : -1]
}
 
 
// Driver Code
N = 3;
points = [ 1, 2, 5 ];
Q = 3;
 
// X and Y coordinates of Q queries
// formally Q number of (X, Y) points
X_coordinate = [ 0, 1, 3 ];
Y_coordinate = [ 0, 1, 4 ];
 
// Function call
minimumLines(N, points, Q, X_coordinate,Y_coordinate);
 
// This code is contributed by Shubham SIngh.


C#




using System;
using System.Collections.Generic;
 
class GFG {
 
    static void Main(string[] args)
    {
 
        int N = 3;
        int[] points = { 1, 2, 5 };
        int Q = 3;
 
        // X and Y coordinates of Q queries
        // formally Q number of (X, Y) points
        int[] X_coordinate = { 0, 1, 3 };
        int[] Y_coordinate = { 0, 1, 4 };
 
        // Function call
        minimumLines(N, points, Q, X_coordinate,
                     Y_coordinate);
    }
 
    // Function to find lines crossed by the point
    static void minimumLines(int N, int[] points, int Q,
                             int[] X_coordinate,
                             int[] Y_coordinate)
    {
 
        // TreeSet for storing points
        SortedSet<long> set = new SortedSet<long>();
 
        // HashMap for storing points and their index
        Dictionary<long, int> hash
            = new Dictionary<long, int>();
 
        // Loop for initializing TreeSet and HashMap
        for (int i = 0; i < N; i++) {
            long val = points[i];
            set.Add(val);
            hash.Add(val, i);
        }
 
        // Loop for number of times Query asked
        for (int i = 0; i < Q; i++) {
            // X coordinate
            int x = X_coordinate[i];
 
            // Y coordinate
            int y = Y_coordinate[i];
 
            // Sum of both coordinates
            long sum = x + y;
 
            // Variable to store minimum number of
            // lines
            int ans = 0;
 
            // Checking if sum exists in HashMap or not
            if (hash.ContainsKey(sum)) {
 
                // Printing -1 as output.
                ans = -1;
                Console.WriteLine(ans);
                continue;
            }
 
            // Checking floor value of sum
            long floor
                = set.GetViewBetween(long.MinValue, sum)
                      .Max;
 
            // Printing number of lines needed
            // to cross by getting floor value
            // of sum
            if (floor != 0) {
                int ind = hash[floor];
                ans = ind + 1;
            }
            Console.WriteLine(ans);
        }
    }
}


Output

0
-1
3

Time Complexity: O(log(N))
Auxiliary Space: O(N)

Another Approach: using Binary Search

  • First, we need to create a TreeSet and HashMap in order to store the points.
  • Traverse through each point and insert it into the TreeSet and HashMap respectively. In the HashMap, store each point along with its index.
  • Run a loop for Q number of times, where Q is the number of queries.
  • For each query, get the X and Y coordinates.
  • Calculate the sum of X and Y coordinates.
  • If the HashMap contains the sum, return -1 as the output.
  • Else, get the floor value of the sum from the TreeSet.
  • If the floor value is not null, get its index from the HashMap.
  • Return the index + 1 as the minimum number of lines to cross to reach the origin.
  • Repeat the above steps for all queries.
  • Finally, output the minimum number of lines for each query.

Implementation takes input as follows:

  • N: The number of integers in the sorted format.
  • points[]: An array containing N integers.
  • Q: The number of queries to be performed.
  • X_coordinate[]: An array containing X-coordinates for each query.
  • Y_coordinate[]: An array containing Y-coordinates for each query.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
  
// Function to find lines crossed by the point
void minimumLines(int N, int points[], int Q,
                  int X_coordinate[], int Y_coordinate[])
{
  
    // TreeSet for storing points
    set<int> set;
  
    // HashMap for storing points and their index
    unordered_map<int, int> hash;
  
    // Loop for initializing TreeSet and HashMap
    for (int i = 0; i < N; i++) {
        int val = points[i];
        set.insert(val);
        hash[val] = i;
    }
  
    // Loop for number of times Query asked
    for (int i = 0; i < Q; i++) {
        // X coordinate
        int x = X_coordinate[i];
  
        // Y coordinate
        int y = Y_coordinate[i];
  
        // Sum of both coordinates
        long sum = x + y;
  
        // Variable to store minimum number of
        // lines
        int ans = 0;
  
        // Checking if sum exists in HashMap or not
        if (hash[sum]) {
  
            // Printing -1 as output.
            ans = -1;
            cout << (ans) << endl;
            continue;
        }
  
        // Checking floor value of sum
  
        auto floor = --set.upper_bound(sum);
  
        // Printing number of lines needed
        // to cross by getting floor value
        // of sum
        if (floor != set.end()) {
            int ind = hash[*floor];
            ans = ind + 1;
        }
        cout << ans << endl;
    }
}
  
// Driver Code
int main()
{
  
    int N = 3;
    int points[] = { 1, 2, 5 };
    int Q = 3;
  
    // X and Y coordinates of Q queries
    // formally Q number of (X, Y) points
    int X_coordinate[] = { 0, 1, 3 };
    int Y_coordinate[] = { 0, 1, 4 };
  
    minimumLines(N, points, Q, X_coordinate, Y_coordinate);
    return 0;
}


Java




// Java code for above approach
import java.util.*;
 
class Main {
// Function to find lines crossed by the point
static void minimumLines(int N, int points[], int Q,
int X_coordinate[], int Y_coordinate[])
{
    // TreeSet for storing points
    NavigableSet<Integer> set = new TreeSet<>();
 
    // HashMap for storing points and their index
    HashMap<Integer, Integer> hash = new HashMap<>();
 
    // Loop for initializing TreeSet and HashMap
    for (int i = 0; i < N; i++) {
        int val = points[i];
        set.add(val);
        hash.put(val, i);
    }
 
    // Loop for number of times Query asked
    for (int i = 0; i < Q; i++) {
        // X coordinate
        int x = X_coordinate[i];
 
        // Y coordinate
        int y = Y_coordinate[i];
 
        // Sum of both coordinates
        long sum = x + y;
 
        // Variable to store minimum number of
        // lines
        int ans = 0;
 
        // Checking if sum exists in HashMap or not
        if (hash.containsKey((int)sum)) {
 
            // Printing -1 as output.
            ans = -1;
            System.out.println(ans);
            continue;
        }
 
        // Checking floor value of sum
 
        Integer floor = set.floor((int)sum);
 
        // Printing number of lines needed
        // to cross by getting floor value
        // of sum
        if (floor != null) {
            int ind = hash.get(floor);
            ans = ind + 1;
        }
        System.out.println(ans);
    }
}
 
// Driver Code
public static void main(String[] args)
{
 
    int N = 3;
    int points[] = { 1, 2, 5 };
    int Q = 3;
 
    // X and Y coordinates of Q queries
    // formally Q number of (X, Y) points
    int X_coordinate[] = { 0, 1, 3 };
    int Y_coordinate[] = { 0, 1, 4 };
 
    minimumLines(N, points, Q, X_coordinate, Y_coordinate);
}
 
}
// This code is contributed Utkarsh Kumar.


Python




def minimumLines(N, points, Q, X_coordinate, Y_coordinate):
    # Set for storing points
    set1 = set()
   
    # Hashmap for storing points and their index
    hash1 = {}
   
    # Loop for initializing Set and hashmap
    for i in range(N):
        val = points[i]
        set1.add(val)
        hash1[val] = i
   
    # Loop for number of times Query asked
    for i in range(Q):
        # X coordinate
        x = X_coordinate[i]
   
        # Y coordinate
        y = Y_coordinate[i]
   
        # Sum of both coordinates
        sum1 = x + y
   
        # Variable to store minimum number of lines
        ans = 0
   
        # Checking if sum exists in hashmap or not
        if sum1 in hash1:
            # Printing -1 as output.
            ans = -1
            print(ans)
            continue
   
        # Checking floor value of sum
   
        floor_list = [e for e in set1 if e < sum1]
        floor = floor_list[-1] if floor_list else None
   
        # Printing number of lines needed
        # to cross by getting floor value
        # of sum
        if floor != None:
            ind = hash1[floor]
            ans = ind + 1
        print(ans)
 
# Driver Code
N = 3
points = [ 1, 2, 5 ]
Q = 3
 
# X and Y coordinates of Q queries
# formally Q number of (X, Y) points
X_coordinate = [ 0, 1, 3 ]
Y_coordinate = [ 0, 1, 4 ]
 
minimumLines(N, points, Q, X_coordinate, Y_coordinate)


C#




using System;
using System.Collections.Generic;
 
class Program {
     
    // Function to find lines crossed by the point
    static void MinimumLines(int N, int[] points, int Q,
        int[] X_coordinate, int[] Y_coordinate) {
 
        // TreeSet for storing points
        SortedSet<int> set = new SortedSet<int>();
 
        // Dictionary for storing points and their index
        Dictionary<int, int> hash = new Dictionary<int, int>();
 
        // Loop for initializing TreeSet and HashMap
        for (int i = 0; i < N; i++) {
            int val = points[i];
            set.Add(val);
            hash[val] = i;
        }
 
        // Loop for number of times Query asked
        for (int i = 0; i < Q; i++) {
            // X coordinate
            int x = X_coordinate[i];
 
            // Y coordinate
            int y = Y_coordinate[i];
 
            // Sum of both coordinates
            long sum = x + y;
 
            // Variable to store minimum number of
            // lines
            int ans = 0;
 
            // Checking if sum exists in Dictionary or not
            if (hash.ContainsKey((int)sum)) {
 
                // Printing -1 as output.
                ans = -1;
                Console.WriteLine(ans+" ");
                continue;
            }
 
            // Checking floor value of sum
 
            var floor = set.GetViewBetween(int.MinValue, (int)(sum - 1)).Max;
 
            // Printing number of lines needed
            // to cross by getting floor value
            // of sum
            if (floor != int.MaxValue && hash.ContainsKey(floor)) {
                int ind = hash[floor];
                ans = ind + 1;
            }
            Console.WriteLine(ans+" ");
        }
    }
 
    // Driver Code
    static void Main(string[] args) {
 
        int N = 3;
        int[] points = { 1, 2, 5 };
        int Q = 3;
 
        // X and Y coordinates of Q queries
        // formally Q number of (X, Y) points
        int[] X_coordinate = { 0, 1, 3 };
        int[] Y_coordinate = { 0, 1, 4 };
 
        MinimumLines(N, points, Q, X_coordinate, Y_coordinate);
    }
}


Javascript




function minimumLines(N, points, Q, X_coordinate, Y_coordinate) {
    // Set for storing points
    let set = new Set();
   
    // Map for storing points and their index
    let hash = new Map();
   
    // Loop for initializing Set and Map
    for (let i = 0; i < N; i++) {
        let val = points[i];
        set.add(val);
        hash.set(val, i);
    }
   
    // Loop for number of times Query asked
    for (let i = 0; i < Q; i++) {
        // X coordinate
        let x = X_coordinate[i];
   
        // Y coordinate
        let y = Y_coordinate[i];
   
        // Sum of both coordinates
        let sum = x + y;
   
        // Variable to store minimum number of lines
        let ans = 0;
   
        // Checking if sum exists in Map or not
        if (hash.has(sum)) {
            // Printing -1 as output.
            ans = -1;
            console.log(ans);
            continue;
        }
   
        // Checking floor value of sum
   
        let floor = Array.from(set).filter(e => e < sum).pop();
   
        // Printing number of lines needed
        // to cross by getting floor value
        // of sum
        if (floor !== undefined) {
            let ind = hash.get(floor);
            ans = ind + 1;
        }
        console.log(ans);
    }
}
 
// Driver Code
let N = 3;
let points = [ 1, 2, 5 ];
let Q = 3;
 
// X and Y coordinates of Q queries
// formally Q number of (X, Y) points
let X_coordinate = [ 0, 1, 3 ];
let Y_coordinate = [ 0, 1, 4 ];
 
minimumLines(N, points, Q, X_coordinate, Y_coordinate);


Output

0
-1
3

Time Complexity: O(Q * log N)

Auxiliary Space:  O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
27 Apr, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments