Given an array arr[] consisting of N positive integers and a positive integer K, the task is to find the minimum number of elements that are required to be inserted such that all numbers from the range [1, K] can be obtained as the sum of any subsequence of the array.
Examples:
Input: arr[] = {1, 3, 5}, K = 10
Output: 1
Explanation:
Appending the element {1} to the array modifies the array to {1, 3, 5, 1}. Now the all the sum over the range [1, K] can be obtained as:
- Sum 1: The elements are {1}.
- Sum 2: The elements are {1, 1}.
- Sum 3: The elements are {3}.
- Sum 4: The elements are {1. 3}.
- Sum 5: The elements are {1, 3, 1}.
- Sum 6: The elements are {1, 5}.
- Sum 7: The elements are {1, 5, 1}.
- Sum 8: The elements are {3, 5}.
- Sum 9: The elements are {1, 3, 5}.
- Sum 10: The elements are {1, 3, 5, 1}.
Input: arr[] = {2, 6, 8, 12, 19}, K = 20
Output: 2
Approach: The given problem can be solved by sorting the array in increasing order and then try to make the sum value over the range [1, K] using the fact that if the sum of array elements X, then all the values over the range [1, X] can be formed. Otherwise, it is required to insert the value (sum + 1) as an array element. Follow the steps below to solve the problem:
- Sort the array arr[] in increasing order.
- Initialize the variable, say index as 0 to maintain the index of the array element and count as 0 to store the resultant total elements added.
- If the value of arr[0] is greater than 1, then 1 needs to be appended, so increase the value of the count by 1. Otherwise, increase the value of the index by 1.
- Initialize the variable, say expect as 2 to maintain the next value expected in the range from 1 to K to be formed from the array arr[].
- Iterate a loop until the value of expect is at most K and perform the following steps:
- If the index is greater than equal to N or arr[index] is greater than the value of expect, then increase the value of count by 1 and multiply the value of expect by 2.
- Otherwise, increase the value of expect by arr[index] and increase the value of the index by 1.
- After completing the above steps, print the value of count as the result.
Below is the implementation of the above approach.
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum number of elements that must // be added to make the sum of array element over the range // [1, K] void findMinimumNumberOfElements( int n, int k, int arr[]) { // Sort the given array sort(arr, arr + n); // Stores the index for the array int index = 0, count = 0; // If 1 is not present, then append it if (arr[0] > 1) ++count; // Move on to next index else ++index; // The expected value in the array long long expect = 2; while (expect <= k) { // Need to append this number if (index >= n || arr[index] > expect) { ++count; expect += expect; } // Otherwise, expand the range by current number else { expect += arr[index]; ++index; } } // Print the answer cout << count; } // Driver Code int main() { int arr[] = { 2, 6, 8, 12, 19 }; int K = 20; int N = sizeof (arr) / sizeof (arr[0]); findMinimumNumberOfElements(N, K, arr); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// C program for the above approach #include <stdio.h> #include <stdlib.h> int cmpfunc( const void * a, const void * b) { return (*( int *)a - *( int *)b); } // Function to find the minimum number of elements that must // be added to make the sum of array element over the range // [1, K] void findMinimumNumberOfElements( int n, int k, int arr[]) { // Sort the given array qsort (arr, n, sizeof ( int ), cmpfunc); // Stores the index for the array int index = 0, count = 0; // If 1 is not present, then append it if (arr[0] > 1) ++count; // Move on to next index else ++index; // The expected value in the array long long expect = 2; while (expect <= k) { // Need to append this number if (index >= n || arr[index] > expect) { ++count; expect += expect; } // Otherwise, expand the range by current number else { expect += arr[index]; ++index; } } // Print the answer printf ( "%d" , count); } // Driver Code int main() { int arr[] = { 2, 6, 8, 12, 19 }; int K = 20; int N = sizeof (arr) / sizeof (arr[0]); findMinimumNumberOfElements(N, K, arr); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// Java program for the above approach import java.io.*; import java.util.Arrays; class GFG { // Function to find the minimum number of elements that // must be added to make the sum of array element over // the range [1, K] static void findMinimumNumberOfElements( int n, int k, int [] arr) { // Sort the given array Arrays.sort(arr); // Stores the index for the array int index = 0 , count = 0 ; // If 1 is not present, then append it if (arr[ 0 ] > 1 ) ++count; // Move on to next index else ++index; // The expected value in the array long expect = 2 ; while (expect <= k) { // Need to append this number if (index >= n || arr[index] > expect) { ++count; expect += expect; } // Otherwise, expand the range by current number else { expect += arr[index]; ++index; } } // Print the answer System.out.println(count); } // Driver Code public static void main(String[] args) { int arr[] = { 2 , 6 , 8 , 12 , 19 }; int K = 20 ; int N = arr.length; findMinimumNumberOfElements(N, K, arr); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# Python 3 program for the above approach # Function to find the minimum number # of elements that must be added to # make the sum of array element over # the range [1, K] def findMinimumNumberOfElements(n, k, arr): # Sort the given array arr.sort() # Stores the index for the # array index = 0 count = 0 if (arr[ 0 ] > 1 ): # If 1 is not present, then # append it count + = 1 # Move on to next index else : index + = 1 # The expected value in the array expect = 2 while (expect < = k): # Need to append this number if (index > = n or arr[index] > expect): count + = 1 expect + = expect # Otherwise, expand the range # by current number else : expect + = arr[index] index + = 1 # Print the answer print (count) # Driver Code if __name__ = = '__main__' : arr = [ 2 , 6 , 8 , 12 , 19 ] K = 20 N = len (arr) findMinimumNumberOfElements(N, K, arr) # This code is contributed by ipg2016107. |
C#
// C# program for the above approach using System; class GFG { // Function to find the minimum number // of elements that must be added to // make the sum of array element over // the range [1, K] static void findMinimumNumberOfElements( int n, int k, int [] arr) { // Sort the given array Array.Sort(arr); // Stores the index for the // array int index = 0; int count = 0; if (arr[0] > 1) { // If 1 is not present, then // append it ++count; } // Move on to next index else { ++index; } // The expected value in the array long expect = 2; while (expect <= k) { // Need to append this number if (index >= n || arr[index] > expect) { ++count; expect += expect; } // Otherwise, expand the range // by current number else { expect += arr[index]; ++index; } } // Print the answer Console.WriteLine(count); } // Driver code public static void Main() { int [] arr = { 2, 6, 8, 12, 19 }; int K = 20; int N = arr.Length; findMinimumNumberOfElements(N, K, arr); } } // This code is contributed by avijitmondal1998. |
Javascript
<script> // Javascript program for the above approach // Function to find the minimum number // of elements that must be added to // make the sum of array element over // the range [1, K] function findMinimumNumberOfElements(n, k, arr) { // Sort the given array arr.sort((a, b) => a - b); // Stores the index for the // array let index = 0; let count = 0; if (arr[0] > 1) { // If 1 is not present, then // append it ++count; } // Move on to next index else { ++index; } // The expected value in the array let expect = 2; while (expect <= k) { // Need to append this number if (index >= n || arr[index] > expect) { ++count; expect += expect; } // Otherwise, expand the range // by current number else { expect += arr[index]; ++index; } } // Print the answer document.write(count); } // Driver Code let arr = [2, 6, 8, 12, 19]; let K = 20; let N = arr.length; findMinimumNumberOfElements(N, K, arr); // This code is contributed by _saurabh_jaiswal. </script> |
2
Time Complexity: O(max(K, N*log N))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!