Given a number N(1 ? N ? 1018) without leading zeros. The task is to find the minimum number of moves required to make N divisible by 25. At each move, one can swap any two adjacent digits and make sure that at any time number must not contain any leading zeros. If it is not possible to make N divisible by 25 then print -1.
Examples:
Input: N = 7560
Output: 1
swap(5, 6) and N becomes 7650 which is divisible by 25
Input: N = 100
Output: 0
Approach: Iterate over all pairs of digits in the number. Let the first digit in the pair is at position i and the second is at position j. Let’s place these digits to the last two positions in the number. But, now the number can contain a leading zero. Find the leftmost non-zero digit and move it to the first position. Then if the current number is divisible by 25 try to update the answer with the number of swaps. The minimum number of swaps across all of these operations is the required answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the minimum number // of moves required to make n divisible // by 25 int minMoves( long long n) { // Convert number into string string s = to_string(n); // To store required answer int ans = INT_MAX; // Length of the string int len = s.size(); // To check all possible pairs for ( int i = 0; i < len; ++i) { for ( int j = 0; j < len; ++j) { if (i == j) continue ; // Make a duplicate string string t = s; int cur = 0; // Number of swaps required to place // ith digit in last position for ( int k = i; k < len - 1; ++k) { swap(t[k], t[k + 1]); ++cur; } // Number of swaps required to place // jth digit in 2nd last position for ( int k = j - (j > i); k < len - 2; ++k) { swap(t[k], t[k + 1]); ++cur; } // Find first non zero digit int pos = -1; for ( int k = 0; k < len; ++k) { if (t[k] != '0' ) { pos = k; break ; } } // Place first non zero digit // in the first position for ( int k = pos; k > 0; --k) { swap(t[k], t[k - 1]); ++cur; } // Convert string to number long long nn = atoll(t.c_str()); // If this number is divisible by 25 // then cur is one of the possible answer if (nn % 25 == 0) ans = min(ans, cur); } } // If not possible if (ans == INT_MAX) return -1; return ans; } // Driver code int main() { long long n = 509201; cout << minMoves(n); return 0; } |
Java
// Java implementation of the approach import java.io.*; class GFG { // Function to return the minimum number // of moves required to make n divisible // by 25 static int minMoves( int n) { // Convert number into string String s = Integer.toString(n); // To store required answer int ans = Integer.MAX_VALUE; // Length of the string int len = s.length(); // To check all possible pairs for ( int i = 0 ; i < len; ++i) { for ( int j = 0 ; j < len; ++j) { if (i == j) continue ; // Make a duplicate string char t [] = s.toCharArray(); int cur = 0 ; // Number of swaps required to place // ith digit in last position for ( int k = i; k < len - 1 ; ++k) { swap(t, k, k + 1 ); ++cur; } // Number of swaps required to place // jth digit in 2nd last position for ( int k = j - ((j > i)? 1 : 0 ); k < len - 2 ; ++k) { swap(t, k, k + 1 ); ++cur; } // Find first non zero digit int pos = - 1 ; for ( int k = 0 ; k < len; ++k) { if (t[k] != '0' ) { pos = k; break ; } } // Place first non zero digit // in the first position for ( int k = pos; k > 0 ; --k) { swap(t, k, k - 1 ); ++cur; } // Convert string to number long nn = Integer.parseInt(String.valueOf(t)); // If this number is divisible by 25 // then cur is one of the possible answer if (nn % 25 == 0 ) ans = Math.min(ans, cur); } } // If not possible if (ans == Integer.MAX_VALUE) return - 1 ; return ans; } static void swap( char t [], int i, int j) { char temp = t[i]; t[i] = t[j]; t[j] = temp; } // Driver code public static void main (String[] args) { int n = 509201 ; System.out.println(minMoves(n)); } } // This code is contributed by Archana_Kumari |
Python3
# Python3 implementation of the approach import sys # Function to return the minimum number # of moves required to make n divisible # by 25 def minMoves(n): # Convert number into string s = str (n); # To store required answer ans = sys.maxsize; # Length of the string len1 = len (s); # To check all possible pairs for i in range (len1): for j in range (len1): if (i = = j): continue ; # Make a duplicate string t = s; cur = 0 ; # Number of swaps required to place # ith digit in last position list1 = list (t); for k in range (i,len1 - 1 ): e = list1[k]; list1[k] = list1[k + 1 ]; list1[k + 1 ] = e; cur + = 1 ; t = ''.join(list1); # Number of swaps required to place # jth digit in 2nd last position list1 = list (t); for k in range (j - (j > i),len1 - 2 ): e = list1[k]; list1[k] = list1[k + 1 ]; list1[k + 1 ] = e; cur + = 1 ; t = ''.join(list1); # Find first non zero digit pos = - 1 ; for k in range (len1): if (t[k] ! = '0' ): pos = k; break ; # Place first non zero digit # in the first position for k in range (pos, 0 , - 1 ): e = list1[k]; list1[k] = list1[k + 1 ]; list1[k + 1 ] = e; cur + = 1 ; t = ''.join(list1); # Convert string to number nn = int (t); # If this number is divisible by 25 # then cur is one of the possible answer if (nn % 25 = = 0 ): ans = min (ans, cur); # If not possible if (ans = = sys.maxsize): return - 1 ; return ans; # Driver code n = 509201 ; print (minMoves(n)); # This code is contributed # by chandan_jnu |
C#
// C# implementation of the approach using System; class GFG { // Function to return the minimum number // of moves required to make n divisible // by 25 static int minMoves( int n) { // Convert number into string string s = n.ToString(); // To store required answer int ans = Int32.MaxValue; // Length of the string int len = s.Length; // To check all possible pairs for ( int i = 0; i < len; ++i) { for ( int j = 0; j < len; ++j) { if (i == j) continue ; // Make a duplicate string char [] t = s.ToCharArray(); int cur = 0; // Number of swaps required to place // ith digit in last position for ( int k = i; k < len - 1; ++k) { swap(t, k, k + 1); ++cur; } // Number of swaps required to place // jth digit in 2nd last position for ( int k = j - ((j > i)? 1 : 0 ); k < len - 2; ++k) { swap(t, k, k + 1); ++cur; } // Find first non zero digit int pos = -1; for ( int k = 0; k < len; ++k) { if (t[k] != '0' ) { pos = k; break ; } } // Place first non zero digit // in the first position for ( int k = pos; k > 0; --k) { swap(t, k, k - 1); ++cur; } // Convert string to number int nn = Convert.ToInt32( new String(t)); // If this number is divisible by 25 // then cur is one of the possible answer if (nn % 25 == 0) ans = Math.Min(ans, cur); } } // If not possible if (ans == Int32.MaxValue) return -1; return ans; } static void swap( char []t, int i, int j) { char temp = t[i]; t[i] = t[j]; t[j] = temp; } // Driver code static void Main() { int n = 509201; Console.WriteLine(minMoves(n)); } } // This code is contributed by mits |
PHP
<?php // PHP implementation of the approach // Function to return the minimum number // of moves required to make n divisible // by 25 function minMoves( $n ) { // Convert number into string $s = strval ( $n ); // To store required answer $ans = PHP_INT_MAX; // Length of the string $len = strlen ( $s ); // To check all possible pairs for ( $i = 0; $i < $len ; ++ $i ) { for ( $j = 0; $j < $len ; ++ $j ) { if ( $i == $j ) continue ; // Make a duplicate string $t = $s ; $cur = 0; // Number of swaps required to place // ith digit in last position for ( $k = $i ; $k < $len - 1; ++ $k ) { $e = $t [ $k ]; $t [ $k ]= $t [ $k + 1]; $t [ $k +1]= $e ; ++ $cur ; } // Number of swaps required to place // jth digit in 2nd last position for ( $k = $j - ( $j > $i ); $k < $len - 2; ++ $k ) { $e = $t [ $k ]; $t [ $k ] = $t [ $k + 1]; $t [ $k + 1] = $e ; ++ $cur ; } // Find first non zero digit $pos = -1; for ( $k = 0; $k < $len ; ++ $k ) { if ( $t [ $k ] != '0' ) { $pos = $k ; break ; } } // Place first non zero digit // in the first position for ( $k = $pos ; $k > 0; -- $k ) { $e = $t [ $k ]; $t [ $k ] = $t [ $k + 1]; $t [ $k + 1] = $e ; ++ $cur ; } // Convert string to number $nn = intval ( $t ); // If this number is divisible by 25 // then cur is one of the possible answer if ( $nn % 25 == 0) $ans = min( $ans , $cur ); } } // If not possible if ( $ans == PHP_INT_MAX) return -1; return $ans ; } // Driver code $n = 509201; echo minMoves( $n ); // This code is contributed // by chandan_jnu ?> |
Javascript
<script> // Javascript implementation of the approach // Function to return the minimum number // of moves required to make n divisible // by 25 function minMoves(n) { // Convert number into string let s = n.toString(); // To store required answer let ans = Number.MAX_VALUE; // Length of the string let len = s.length; // To check all possible pairs for (let i = 0; i < len; ++i) { for (let j = 0; j < len; ++j) { if (i == j) continue ; // Make a duplicate string let t = s.split( '' ); let cur = 0; // Number of swaps required to place // ith digit in last position for (let k = i; k < len - 1; ++k) { swap(t, k, k + 1); ++cur; } // Number of swaps required to place // jth digit in 2nd last position for (let k = j - ((j > i)? 1 : 0 ); k < len - 2; ++k) { swap(t, k, k + 1); ++cur; } // Find first non zero digit let pos = -1; for (let k = 0; k < len; ++k) { if (t[k] != '0' ) { pos = k; break ; } } // Place first non zero digit // in the first position for (let k = pos; k > 0; --k) { swap(t, k, k - 1); ++cur; } // Convert string to number let nn = parseInt(t.join( "" )); // If this number is divisible by 25 // then cur is one of the possible answer if (nn % 25 == 0) ans = Math.min(ans, cur); } } // If not possible if (ans == Number.MAX_VALUE) return -1; return ans; } function swap(t, i, j) { let temp = t[i]; t[i] = t[j]; t[j] = temp; } let n = 509201; document.write(minMoves(n)); // This code is contributed by mukesh07. </script> |
4
Time Complexity: O(|n|3)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!