Sunday, January 12, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimum number of flips or swaps of adjacent characters required to make...

Minimum number of flips or swaps of adjacent characters required to make two strings equal

Given two binary strings A and B of length N, the task is to count the minimum number of operations required to make the two given strings equal by either swapping adjacent characters or flipping any character of the string A.

Examples:

Input: A = “100”, B = “001”
Output: 2
Explanation: Flipping characters A[0](= ‘1’) and A[2](= ‘0’) modifies the string A to “001”, which is equal to the string B.

Input: A = “0101”, B = “0011”
Output: 1
Explanation: Swapping the characters A[2](= ‘0’) and A[3](= ‘1’) modifies the string A to “0011”, which is equal to string B.

Approach: The problem can be solved using Dynamic Programming as it has Overlapping Subproblems and Optimal Substructure
Follow the steps below to solve the problem:

  • Initialize an array, say dp[] of size N+1 as {0}, where dp[i] stores the minimum number of operations required up to index i, to make the prefix of Ai equal to the prefix Bi.
  • Iterate over the range [1, N] using a variable, say i, and performing the following operations:
    • If A[i – 1] equals B[i – 1], then update dp[i] to dp[i – 1].
    • Otherwise, update dp[i] to dp[i – 1] + 1.
    • If swapping is possible, i.e. i > 1 and A[i – 2] is equal to B[i – 1] and A[i – 1] is equal to B[i – 2], then update dp[i] to min(dp[i], dp[i – 2] + 1).
  • After completing the above steps, print the minimum number of operations obtained, i.e. the value dp[N].

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the minimum
// number of operations required
// to make strings A and B equal
int countMinSteps(string A, string B, int N)
{
 
    // Stores all dp-states
    vector<int> dp(N + 1, 0);
 
    // Iterate over the range [1, N]
    for (int i = 1; i <= N; i++) {
 
        // If A[i - 1] equals to B[i - 1]
        if (A[i - 1] == B[i - 1]) {
 
            // Assign Dp[i - 1] to Dp[i]
            dp[i] = dp[i - 1];
        }
 
        // Otherwise
        else {
 
            // Update dp[i]
            dp[i] = dp[i - 1] + 1;
        }
 
        // If swapping is possible
        if (i >= 2 && A[i - 2] == B[i - 1]
            && A[i - 1] == B[i - 2]) {
 
            // Update dp[i]
            dp[i] = min(dp[i], dp[i - 2] + 1);
        }
    }
 
    // Return the minimum
    // number of steps required
    return dp[N];
}
 
// Driver Code
int main()
{
    // Given Input
    string A = "0101";
    string B = "0011";
    int N = A.length();
 
    // Function Call
    cout << countMinSteps(A, B, N);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to count the minimum
// number of operations required
// to make strings A and B equal
static int countMinSteps(String A, String B, int N)
{
     
    // Stores all dp-states
    int[] dp = new int[N + 1];
    for(int i = 1; i <= N; i++)
    {
         
        // Update the value of A[i]
        dp[i] = 0;
    }
 
    // Iterate over the range [1, N]
    for(int i = 1; i <= N; i++)
    {
         
        // If A[i - 1] equals to B[i - 1]
        if (A.charAt(i - 1) == B.charAt(i - 1))
        {
             
            // Assign Dp[i - 1] to Dp[i]
            dp[i] = dp[i - 1];
        }
 
        // Otherwise
        else
        {
             
            // Update dp[i]
            dp[i] = dp[i - 1] + 1;
        }
 
        // If swapping is possible
        if (i >= 2 && A.charAt(i - 2) == B.charAt(i - 1) &&
                      A.charAt(i - 1) == B.charAt(i - 2))
        {
             
            // Update dp[i]
            dp[i] = Math.min(dp[i], dp[i - 2] + 1);
        }
    }
 
    // Return the minimum
    // number of steps required
    return dp[N];
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given Input
    String A = "0101";
    String B = "0011";
    int N = A.length();
     
    // Function Call
    System.out.println(countMinSteps(A, B, N));
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
 
# Function to count the minimum
# number of operations required
# to make strings A and B equal
def countMinSteps(A, B, N) :
 
    # Stores all dp-states
    dp = [0] * (N + 1)
 
    # Iterate rate over the range [1, N]
    for i in range(1, N+1) :
 
        # If A[i - 1] equals to B[i - 1]
        if (A[i - 1] == B[i - 1]) :
 
            # Assign Dp[i - 1] to Dp[i]
            dp[i] = dp[i - 1]
         
 
        # Otherwise
        else :
 
            # Update dp[i]
            dp[i] = dp[i - 1] + 1
         
 
        # If swapping is possible
        if (i >= 2 and A[i - 2] == B[i - 1]
            and A[i - 1] == B[i - 2]) :
 
            # Update dp[i]
            dp[i] = min(dp[i], dp[i - 2] + 1)
         
    # Return the minimum
    # number of steps required
    return dp[N]
 
 
# Driver Code
 
# Given Input
A = "0101"
B = "0011"
N = len(A)
 
# Function Call
print(countMinSteps(A, B, N))
 
# This code is contributed by splevel62.


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count the minimum
// number of operations required
// to make strings A and B equal
static int countMinSteps(string A, string B, int N)
{
     
    // Stores all dp-states
    int[] dp = new int[N + 1];
    for(int i = 1; i <= N; i++)
    {
         
        // Update the value of A[i]
        dp[i] = 0;
    }
 
    // Iterate over the range [1, N]
    for(int i = 1; i <= N; i++)
    {
         
        // If A[i - 1] equals to B[i - 1]
        if (A[i - 1] == B[i - 1])
        {
             
            // Assign Dp[i - 1] to Dp[i]
            dp[i] = dp[i - 1];
        }
 
        // Otherwise
        else
        {
             
            // Update dp[i]
            dp[i] = dp[i - 1] + 1;
        }
 
        // If swapping is possible
        if (i >= 2 && A[i - 2] == B[i - 1] &&
                      A[i - 1] == B[i - 2])
        {
             
            // Update dp[i]
            dp[i] = Math.Min(dp[i], dp[i - 2] + 1);
        }
    }
 
    // Return the minimum
    // number of steps required
    return dp[N];
}
 
// Driver code
public static void Main(String []args)
{
     
    // Given Input
    string A = "0101";
    string B = "0011";
    int N = A.Length;
 
    // Function Call
    Console.Write(countMinSteps(A, B, N));
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
       // JavaScript Program for the above approach
 
 
       // Function to count the minimum
       // number of operations required
       // to make strings A and B equal
       function countMinSteps(A, B, N) {
 
           // Stores all dp-states
           let dp = new Array(N + 1).fill(0);
 
           // Iterate over the range [1, N]
           for (let i = 1; i <= N; i++) {
 
               // If A[i - 1] equals to B[i - 1]
               if (A[i - 1] == B[i - 1]) {
 
                   // Assign Dp[i - 1] to Dp[i]
                   dp[i] = dp[i - 1];
               }
 
               // Otherwise
               else {
 
                   // Update dp[i]
                   dp[i] = dp[i - 1] + 1;
               }
 
               // If swapping is possible
               if (i >= 2 && A[i - 2] == B[i - 1]
                   && A[i - 1] == B[i - 2]) {
 
                   // Update dp[i]
                   dp[i] = Math.min(dp[i], dp[i - 2] + 1);
               }
           }
 
           // Return the minimum
           // number of steps required
           return dp[N];
       }
 
       // Driver Code
 
       // Given Input
       let A = "0101";
       let B = "0011";
       let N = A.length;
 
       // Function Call
       document.write(countMinSteps(A, B, N));
 
 
   // This code is contributed by Potta Lokesh
   </script>


Output

1

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Efficient approach : Space optimization O(1)

In previous approach we the current value dp[i] is only depend upon the previous 2 values i.e. dp[i-1] and dp[i-2]. So to optimize the space we can keep track of previous and current values by the help of three variables prev1, prev2 and curr which will reduce the space complexity from O(N) to O(1).  

Implementation Steps:

  • Create 2 variables prev1 and prev2 to keep track o previous values of DP.
  • Initialize base case prev1 = prev2 = 0.
  • Create a variable curr to store current value.
  • Iterate over subproblem using loop and update curr.
  • After every iteration update prev1 and prev2 for further iterations.
  • At last return curr.

Implementation:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the minimum
// number of operations required
// to make strings A and B equal
int countMinSteps(string A, string B, int N)
{  
     // variables to Stores all dp-states
    int prev1 = 0, prev2 = 0, curr = 0;
     
     // Iterate over the range [1, N]
    for (int i = 1; i <= N; i++) {
         
        // If A[i - 1] equals to B[i - 1]
        if (A[i - 1] == B[i - 1]){
             
            // Assign prev1 to curr
            curr = prev1;
        }
        else{
             
            // Update dp[i]
            curr = prev1 + 1;
        }
             
        // If swapping is possible
        if (i >= 2 && A[i - 2] == B[i - 1] && A[i - 1] == B[i - 2]){
            // Update curr
            curr = min(curr, prev2 + 1);
             
        }
         
        // assigning values for further iteration
        prev2 = prev1;
        prev1 = curr;
    }
     
    // return answer
    return curr;
}
 
// Driver Code
int main()
{
    string A = "0101";
    string B = "0011";
    int N = A.length();
     
    // function call
    cout << countMinSteps(A, B, N);
 
    return 0;
}
// --- by bhardwajji


Java




import java.util.*;
 
public class Main
{
 
  // Function to count the minimum
  // number of operations required
  // to make strings A and B equal
  static int countMinSteps(String A, String B, int N)
  {
 
    // variables to Stores all dp-states
    int prev1 = 0, prev2 = 0, curr = 0;
 
    // Iterate over the range [1, N]
    for (int i = 1; i <= N; i++) {
 
      // If A[i - 1] equals to B[i - 1]
      if (A.charAt(i - 1) == B.charAt(i - 1)) {
 
        // Assign prev1 to curr
        curr = prev1;
      } else {
 
        // Update dp[i]
        curr = prev1 + 1;
      }
 
      // If swapping is possible
      if (i >= 2 && A.charAt(i - 2) == B.charAt(i - 1) && A.charAt(i - 1) == B.charAt(i - 2)) {
        // Update curr
        curr = Math.min(curr, prev2 + 1);
 
      }
 
      // assigning values for further iteration
      prev2 = prev1;
      prev1 = curr;
    }
 
    // return answer
    return curr;
  }
 
  // Driver Code
  public static void main(String[] args) {
    String A = "0101";
    String B = "0011";
    int N = A.length();
 
    // function call
    System.out.println(countMinSteps(A, B, N));
  }
}


Python




def countMinSteps(A, B, N):
    # variables to Stores all dp-states
    prev1, prev2, curr = 0, 0, 0
     
    # Iterate over the range [1, N]
    for i in range(1, N+1):
        # If A[i - 1] equals to B[i - 1]
        if A[i - 1] == B[i - 1]:
            # Assign prev1 to curr
            curr = prev1
        else:
            # Update dp[i]
            curr = prev1 + 1
             
        # If swapping is possible
        if i >= 2 and A[i - 2] == B[i - 1] and A[i - 1] == B[i - 2]:
            # Update curr
            curr = min(curr, prev2 + 1)
             
        # assigning values for further iteration
        prev2, prev1 = prev1, curr
     
    # return answer
    return curr
 
# Driver Code
A = "0101"
B = "0011"
N = len(A)
 
# function call
print(countMinSteps(A, B, N))


C#




// C# program for the above approach
using System;
 
public class GFG {
    // Function to count the minimum
    // number of operations required
    // to make strings A and B equal
    public static int CountMinSteps(string A, string B,
                                    int N)
    {
        // Variables to store all dp-states
        int prev1 = 0, prev2 = 0, curr = 0;
 
        // Iterate over the range [1, N]
        for (int i = 1; i <= N; i++) {
            // If A[i - 1] equals to B[i - 1]
            if (A[i - 1] == B[i - 1]) {
                // Assign prev1 to curr
                curr = prev1;
            }
            else {
                // Update dp[i]
                curr = prev1 + 1;
            }
 
            // If swapping is possible
            if (i >= 2 && A[i - 2] == B[i - 1]
                && A[i - 1] == B[i - 2]) {
                // Update curr
                curr = Math.Min(curr, prev2 + 1);
            }
 
            // Assigning values for further iteration
            prev2 = prev1;
            prev1 = curr;
        }
 
        // Return the answer
        return curr;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        string A = "0101";
        string B = "0011";
        int N = A.Length;
 
        // Function call
        Console.WriteLine(CountMinSteps(A, B, N));
    }
}
 
// This code is contributed by Susobhan Akhuli


Output: 

1

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments