Monday, January 6, 2025
Google search engine
HomeData Modelling & AIMinimum number of edges between two vertices of a graph using DFS

Minimum number of edges between two vertices of a graph using DFS

Given an undirected graph G(V, E) with N vertices and M edges. We need to find the minimum number of edges between a given pair of vertices (u, v)
We have already discussed this problem using the BFS approach, here we will use the DFS approach.

Examples:

Input: For the following given graph, find the minimum number of edges between vertex pair (0, 4) 
 

Output:1
There are three paths from 0 to 4: 
0 -> 1 -> 2 -> 4 
0 -> 1 -> 2 -> 3 -> 4 
0 -> 4 
Only the third path results in minimum number of edges. 

Approach: In this approach we will traverse the graph in a DFS manner, starting from the given vertex and explore all the paths from that vertex to our destination vertex. 

We will use two variables, edge_count and min_num_of_edges. While exploring all the paths, between these vertices, edge_count will store count of total number of edges among them, if number of edges is less than the minimum number of edges we will update min_num_of_edges.

Below is the implementation of the above approach:

C++




// C++ program to find minimum
// number of edges between any two
// vertices of the graph
 
#include <bits/stdc++.h>
using namespace std;
 
// Class to represent a graph
class Graph {
 
    // No. of vertices
    int V;
 
    // Pointer to an array containing
    // adjacency lists
    list<int>* adj;
 
    // A function used by minEdgeDFS
    void minEdgeDFSUtil(vector<bool>& visited,
                        int src, int des, int& min_num_of_edges,
                        int& edge_count);
 
public:
    // Constructor
    Graph(int V);
 
    // Function to add an edge to graph
    void addEdge(int src, int des);
 
    // Prints the minimum number of edges
    void minEdgeDFS(int u, int v);
};
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int src, int des)
{
    adj[src].push_back(des);
    adj[des].push_back(src);
}
 
// Utility function for finding minimum number
// of edges using DFS
void Graph::minEdgeDFSUtil(vector<bool>& visited,
                           int src, int des, int& min_num_of_edges,
                           int& edge_count)
{
    // For keeping track of visited
    // nodes in DFS
    visited[src] = true;
 
    // If we have found the destination vertex
    // then check whether count of total number of edges
    // is less than the minimum number of edges or not
    if (src == des) {
        if (min_num_of_edges > edge_count)
            min_num_of_edges = edge_count;
    }
 
    // If current vertex is not destination
    else {
 
        // Recur for all the vertices
        // adjacent to current vertex
        list<int>::iterator i;
 
        for (i = adj[src].begin(); i != adj[src].end(); i++) {
            int v = *i;
 
            if (!visited[v]) {
                edge_count++;
 
                minEdgeDFSUtil(visited, v, des, min_num_of_edges,
                               edge_count);
            }
        }
    }
 
    // Decrement the count of number of edges
    // and mark current vertex as unvisited
    visited[src] = false;
    edge_count--;
}
 
// Function to print minimum number of edges
// It uses recursive minEdgeDFSUtil
void Graph::minEdgeDFS(int u, int v)
{
    // To keep track of all the
    // visited vertices
    vector<bool> visited(V, false);
 
    // To store minimum number of edges
    int min_num_of_edges = INT_MAX;
 
    // To store total number of
    // edges in each path
    int edge_count = 0;
 
    minEdgeDFSUtil(visited, u, v, min_num_of_edges,
                   edge_count);
 
    // Print the minimum number of edges
    cout << min_num_of_edges;
}
 
// Driver Code
int main()
{
    // Create a graph
    Graph g(5);
    g.addEdge(0, 1);
    g.addEdge(0, 4);
    g.addEdge(1, 2);
    g.addEdge(2, 4);
    g.addEdge(2, 3);
    g.addEdge(3, 4);
 
    int u = 0;
    int v = 3;
    g.minEdgeDFS(u, v);
 
    return 0;
}


Java




// Java program to find minimum
// number of edges between any two
// vertices of the graph
import java.io.*;
import java.util.*;
 
class GFG
{
 
    static int min_num_of_edges = 0, edge_count = 0;
 
    // Class to represent a graph
    static class Graph
    {
 
        // No. of vertices
        int V;
 
        // Pointer to an array containing
        // adjacency lists
        Vector<Integer>[] adj;
 
        // A function used by minEdgeDFS
 
        // Utility function for finding minimum number
        // of edges using DFS
        private void minEdgeDFSUtil(boolean[] visited,
                                    int src, int des)
        {
 
            // For keeping track of visited
            // nodes in DFS
            visited[src] = true;
 
            // If we have found the destination vertex
            // then check whether count of total number of edges
            // is less than the minimum number of edges or not
            if (src == des)
            {
                if (min_num_of_edges > edge_count)
                    min_num_of_edges = edge_count;
            }
 
            // If current vertex is not destination
            else
            {
                for (int i : adj[src])
                {
                    int v = i;
 
                    if (!visited[v])
                    {
                        edge_count++;
                        minEdgeDFSUtil(visited, v, des);
                    }
                }
            }
 
            // Decrement the count of number of edges
            // and mark current vertex as unvisited
            visited[src] = false;
            edge_count--;
        }
 
        // Constructor
        @SuppressWarnings("unchecked")
        Graph(int V) {
            this.V = V;
            adj = new Vector[V];
 
            for (int i = 0; i < V; i++)
                adj[i] = new Vector<>();
        }
 
        // Function to add an edge to graph
        void addEdge(int src, int des)
        {
            adj[src].add(des);
            adj[des].add(src);
        }
 
        // Function to print minimum number of edges
        // It uses recursive minEdgeDFSUtil
        void minEdgeDFS(int u, int v)
        {
 
            // To keep track of all the
            // visited vertices
            boolean[] visited = new boolean[this.V];
            Arrays.fill(visited, false);
 
            // To store minimum number of edges
            min_num_of_edges = Integer.MAX_VALUE;
 
            // To store total number of
            // edges in each path
            edge_count = 0;
 
            minEdgeDFSUtil(visited, u, v);
 
            // Print the minimum number of edges
            System.out.println(min_num_of_edges);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Create a graph
        Graph g = new Graph(5);
        g.addEdge(0, 1);
        g.addEdge(0, 4);
        g.addEdge(1, 2);
        g.addEdge(2, 4);
        g.addEdge(2, 3);
        g.addEdge(3, 4);
 
        int u = 0;
        int v = 3;
        g.minEdgeDFS(u, v);
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 program to find minimum
# number of edges between any two
# vertices of the graph
 
# Class to represent a graph
class Graph: 
 
    def __init__(self, V):
        self.V = V
        self.adj = [[] for i in range(V)]
         
    def addEdge(self, src, des):
  
        self.adj[src].append(des)
        self.adj[des].append(src)
  
    # Utility function for finding
    # minimum number of edges using DFS
    def minEdgeDFSUtil(self, visited, src, des, min_num_of_edges, edge_count):
      
        # For keeping track of visited nodes in DFS
        visited[src] = True
     
        # If we have found the destination vertex
        # then check whether count of total number of edges
        # is less than the minimum number of edges or not
        if src == des:
            if min_num_of_edges > edge_count:
                min_num_of_edges = edge_count
          
        # If current vertex is not destination
        else
     
            # Recur for all the vertices
            # adjacent to current vertex
            for v in self.adj[src]: 
                 
                if not visited[v]: 
                    edge_count += 1
     
                    min_num_of_edges, edge_count = \
                    self.minEdgeDFSUtil(visited, v, des, min_num_of_edges, edge_count)
                  
        # Decrement the count of number of edges
        # and mark current vertex as unvisited
        visited[src] = False
        edge_count -= 1
        return min_num_of_edges, edge_count
      
    # Function to print minimum number of
    # edges. It uses recursive minEdgeDFSUtil
    def minEdgeDFS(self, u, v):
      
        # To keep track of all the
        # visited vertices
        visited = [False] * self.V
     
        # To store minimum number of edges
        min_num_of_edges = float('inf')
     
        # To store total number of
        # edges in each path
        edge_count = 0
     
        min_num_of_edges, edge_count = \
        self.minEdgeDFSUtil(visited, u, v, min_num_of_edges, edge_count)
     
        # Print the minimum number of edges
        print(min_num_of_edges)
  
# Driver Code
if __name__ == "__main__":
  
    # Create a graph
    g = Graph(5)
    g.addEdge(0, 1)
    g.addEdge(0, 4)
    g.addEdge(1, 2)
    g.addEdge(2, 4)
    g.addEdge(2, 3)
    g.addEdge(3, 4)
 
    u, v = 0, 3
    g.minEdgeDFS(u, v)
 
# This code is contributed by Rituraj Jain


C#




// C# program to find minimum
// number of edges between any two
// vertices of the graph
using System;
using System.Collections;
 
class GFG{
 
static int min_num_of_edges = 0,
                 edge_count = 0;
 
// Class to represent a graph
class Graph
{
     
    // No. of vertices
    public int V;
 
    // Pointer to an array containing
    // adjacency lists
    public ArrayList []adj;
 
    // A function used by minEdgeDFS
 
    // Utility function for finding
    // minimum number of edges using DFS
    public void minEdgeDFSUtil(bool[] visited,
                               int src, int des)
    {
         
        // For keeping track of visited
        // nodes in DFS
        visited[src] = true;
 
        // If we have found the destination
        // vertex then check whether count
        // of total number of edges is less
        // than the minimum number of edges or not
        if (src == des)
        {
            if (min_num_of_edges > edge_count)
                min_num_of_edges = edge_count;
        }
 
        // If current vertex is not destination
        else
        {
            foreach(int i in adj[src])
            {
                int v = i;
 
                if (!visited[v])
                {
                    edge_count++;
                    minEdgeDFSUtil(visited, v, des);
                }
            }
        }
 
        // Decrement the count of number of edges
        // and mark current vertex as unvisited
        visited[src] = false;
        edge_count--;
    }
 
    public Graph(int V)
    {
        this.V = V;
        adj = new ArrayList[V];
 
        for(int i = 0; i < V; i++)
            adj[i] = new ArrayList();
    }
 
    // Function to add an edge to graph
    public void addEdge(int src, int des)
    {
        adj[src].Add(des);
        adj[des].Add(src);
    }
 
    // Function to print minimum number of edges
    // It uses recursive minEdgeDFSUtil
    public void minEdgeDFS(int u, int v)
    {
 
        // To keep track of all the
        // visited vertices
        bool[] visited = new bool[this.V];
        Array.Fill(visited, false);
 
        // To store minimum number of edges
        min_num_of_edges = Int32.MaxValue;
 
        // To store total number of
        // edges in each path
        edge_count = 0;
 
        minEdgeDFSUtil(visited, u, v);
 
        // Print the minimum number of edges
        Console.Write(min_num_of_edges);
    }
}
 
// Driver Code
public static void Main(string[] args)
{
 
    // Create a graph
    Graph g = new Graph(5);
    g.addEdge(0, 1);
    g.addEdge(0, 4);
    g.addEdge(1, 2);
    g.addEdge(2, 4);
    g.addEdge(2, 3);
    g.addEdge(3, 4);
 
    int u = 0;
    int v = 3;
     
    g.minEdgeDFS(u, v);
}
}
 
// This code is contributed by rutvik_56


Javascript




// Class to represent a graph
class Graph {
constructor(V) {
this.V = V;
this.adj = [];
for (let i = 0; i < V; i++) {
this.adj[i] = [];
}
}
 
addEdge(src, des) {
this.adj[src].push(des);
this.adj[des].push(src);
}
 
// Utility function for finding
// minimum number of edges using DFS
minEdgeDFSUtil(visited, src, des, min_num_of_edges, edge_count) {
// For keeping track of visited nodes in DFS
visited[src] = true;
 
// If we have found the destination vertex
// then check whether count of total number of edges
// is less than the minimum number of edges or not
if (src == des) {
  if (min_num_of_edges > edge_count) {
    min_num_of_edges = edge_count;
  }
} else {
  // Recur for all the vertices
  // adjacent to current vertex
  for (let v of this.adj[src]) {
    if (!visited[v]) {
      edge_count++;
 
      const result = this.minEdgeDFSUtil(visited, v, des,
      min_num_of_edges, edge_count);
      min_num_of_edges = result[0];
      edge_count = result[1];
    }
  }
}
// Decrement the count of number of edges
// and mark current vertex as unvisited
visited[src] = false;
edge_count--;
return [min_num_of_edges, edge_count];
}
 
// Function to print minimum number of
// edges. It uses recursive minEdgeDFSUtil
minEdgeDFS(u, v) {
// To keep track of all the
// visited vertices
let visited = [];
for (let i = 0; i < this.V; i++) {
visited[i] = false;
}
 
 
// To store minimum number of edges
let min_num_of_edges = Number.POSITIVE_INFINITY;
 
// To store total number of
// edges in each path
let edge_count = 0;
 
const result = this.minEdgeDFSUtil(visited, u, v, min_num_of_edges, edge_count);
min_num_of_edges = result[0];
edge_count = result[1];
 
// Print the minimum number of edges
console.log(min_num_of_edges);
}
}
// Driver Code
 
// Create a graph
const g = new Graph(
5);
g.addEdge(0, 1);
g.addEdge(0, 4);
g.addEdge(1, 2);
g.addEdge(2, 4);
g.addEdge(2, 3);
g.addEdge(3, 4);
 
const u = 0;
const v = 3;
 
g.minEdgeDFS(u, v);


Output

2

Complexity Analysis:

  • Time Complexity: O(V + E) where V and E are the numbers of vertices and edges in the graph respectively.
  • Auxiliary Space: O(V).  
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments