Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMinimum number of distinct powers of 2 required to express a given...

Minimum number of distinct powers of 2 required to express a given binary number

Given a binary string S, the task is to find the minimum number of Powers of 2 required to express a S.
Examples: 
 

Input: S = “111” 
Output:
Explanation: 
Two possible representations of “111” (= 7) using powers of 2 are: 
20 + 21 + 22 = 1 + 2 + 4 = 7 
23 – 20 = 8 – 1 = 7 
Therefore, the minimum powers of 2 required to represent S is 2.
Input: S = “1101101” 
Output:
Explanation: 
1101101 can be represented as 27 – 24 – 22 + 20.

Approach: 
The key observation to solve this problem is that we can replace any consecutive sequence of 1 by using only two powers of 2
 

Illustration: 
S = “1001110” 
The sequence of 3 consecutive 1’s, “1110” can be expressed as 24 – 21 
Therefore, the given str

Follow the steps below to solve the problem: 
 

  • Reverse the string S.
  • Iterate over the string S.
  • Replace every substring of 1’s lying within indices [L, R] by placing 1 at R+1 and -1 at L.
  • Once the entire string is traversed, count the number of non-zero values in the string as the required answer.

Below is the implementation of the above approach: 
 

C++




// C++ Program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// distinct powers of 2 required
// to express s
void findMinimum(string s)
{
    int n = s.size();
 
    int x[n + 1] = { 0 };
 
    // Reverse the string to
    // start from lower powers
    reverse(s.begin(), s.end());
 
    for (int i = 0; i < n; i++) {
 
        // Check if the character is 1
        if (s[i] == '1') {
 
            if (x[i] == 1) {
                x[i + 1] = 1;
                x[i] = 0;
            }
 
            // Add in range provided range
            else if (i and x[i - 1] == 1) {
                x[i + 1] = 1;
                x[i - 1] = -1;
            }
 
            else
                x[i] = 1;
        }
    }
 
    // Initialize the counter
    int c = 0;
 
    for (int i = 0; i <= n; i++) {
 
        // Check if the character
        // is not 0
        if (x[i] != 0)
 
            // Increment the counter
            c++;
    }
 
    // Print the result
    cout << c << endl;
}
 
// Driver Code
int main()
{
    string str = "111";
 
    findMinimum(str);
 
    return 0;
}


Java




// Java program to implement the
// above approach
import java.util.*;
 
class GFG{
 
// Function to return the minimum
// distinct powers of 2 required
// to express s
static void findMinimum(String s)
{
    int n = s.length();
    int[] x = new int[n + 1];
     
    StringBuilder s2 = new StringBuilder(s);
     
    // Reverse the string to
    // start from lower powers
    s2.reverse();
     
    String s3 = s2.toString();
 
    for(int i = 0; i < n; i++)
    {
 
        // Check if the character is 1
        if (s3.charAt(i) == '1')
        {
            if (x[i] == 1)
            {
                x[i + 1] = 1;
                x[i] = 0;
            }
 
            // Add in range provided range
            else if (1 <= i && (i & x[i - 1]) == 1)
            {
                x[i + 1] = 1;
                x[i - 1] = -1;
            }
            else
                x[i] = 1;
        }
    }
 
    // Initialize the counter
    int c = 0;
 
    for(int i = 0; i <= n; i++)
    {
 
        // Check if the character
        // is not 0
        if (x[i] != 0)
 
            // Increment the counter
            c++;
    }
     
    // Print the result
    System.out.println(c);
}
 
// Driver code
public static void main(String[] args)
{
    String str = "111";
 
    findMinimum(str);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to implement the
# above approach
 
# Function to return the minimum
# distinct powers of 2 required
# to express s
def findMinimum(s):
 
    n = len(s)
    x = [0] * (n + 1)
 
    # Reverse the string to
    # start from lower powers
    s = s[::-1]
     
    for i in range(n):
         
        # Check if the character is 1
        if(s[i] == '1'):
            if(x[i] == 1):
                x[i + 1] = 1
                x[i] = 0
 
            # Add in range provided range
            elif(i and x[i - 1] == 1):
                x[i + 1] = 1
                x[i - 1] = -1
 
            else:
                x[i] = 1
 
    # Initialize the counter
    c = 0
 
    for i in range(n + 1):
 
        # Check if the character
        # is not 0
        if(x[i] != 0):
 
            # Increment the counter
            c += 1
 
    # Print the result
    print(c)
 
# Driver Code
if __name__ == '__main__':
 
    str = "111"
     
    # Function Call
    findMinimum(str)
 
# This code is contributed by Shivam Singh


C#




// C# program to implement the
// above approach
using System;
using System.Text;
 
class GFG{
 
// Function to return the minimum
// distinct powers of 2 required
// to express s
static void findMinimum(String s)
{
    int n = s.Length;
    int[] x = new int[n + 1];
     
    StringBuilder s2 = new StringBuilder(s);
     
    // Reverse the string to
    // start from lower powers
    s2 = reverse(s2.ToString());
     
    String s3 = s2.ToString();
 
    for(int i = 0; i < n; i++)
    {
         
        // Check if the character is 1
        if (s3[i] == '1')
        {
            if (x[i] == 1)
            {
                x[i + 1] = 1;
                x[i] = 0;
            }
 
            // Add in range provided range
            else if (1 <= i && (i & x[i - 1]) == 1)
            {
                x[i + 1] = 1;
                x[i - 1] = -1;
            }
            else
                x[i] = 1;
        }
    }
 
    // Initialize the counter
    int c = 0;
 
    for(int i = 0; i <= n; i++)
    {
         
        // Check if the character
        // is not 0
        if (x[i] != 0)
 
            // Increment the counter
            c++;
    }
     
    // Print the result
    Console.WriteLine(c);
}
 
static StringBuilder reverse(String input)
{
    char[] a = input.ToCharArray();
    int l, r = a.Length - 1;
     
    for(l = 0; l < r; l++, r--)
    {
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return new StringBuilder(String.Join("", a));
}
 
// Driver code
public static void Main(String[] args)
{
    String str = "111";
 
    findMinimum(str);
}
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
  
 
// Javascript Program to implement the
// above approach
 
// Function to return the minimum
// distinct powers of 2 required
// to express s
function findMinimum(s)
{
    var n = s.length;
 
    var x = Array(n+1).fill(0);
 
    // Reverse the string to
    // start from lower powers
    s.reverse();
 
    for (var i = 0; i < n; i++) {
 
        // Check if the character is 1
        if (s[i] == '1') {
 
            if (x[i] == 1) {
                x[i + 1] = 1;
                x[i] = 0;
            }
 
            // Add in range provided range
            else if (i && x[i - 1] == 1) {
                x[i + 1] = 1;
                x[i - 1] = -1;
            }
 
            else
                x[i] = 1;
        }
    }
 
    // Initialize the counter
    var c = 0;
 
    for (var i = 0; i <= n; i++) {
 
        // Check if the character
        // is not 0
        if (x[i] != 0)
 
            // Increment the counter
            c++;
    }
 
    // Print the result
    document.write( c );
}
 
// Driver Code
var str = "111".split('');
findMinimum(str);
 
</script>


Output: 

2

 

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments