Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIMinimum number of deques required to make the array sorted

Minimum number of deques required to make the array sorted

Given an array arr containing N unique integers. The task is to calculate the minimum number of deques required to make the array sorted.

Example

Input: arr[] = {3, 6, 0, 9, 5, 4}
Output: 2
Explanation
Create a new deque d1 = {3}.
Create a new deque d2 = {6}.
Push 0 onto the front of d1; d1 = {0, 3}
Push 9 onto the back of d2; d2 = {6, 9}
Push 5 onto the front of d2; d2 = {5, 6, 9}
Push 4 onto the front of d2; d2 = {4, 5, 6, 9}
Hence 2 minimum 2 deques are required.

Input: arr[] = {50, 45, 55, 60, 65, 40, 70, 35, 30, 75}
Output: 1

 

Approach: The above problem can be solved greedily. Follow the below steps to solve the problem:

  1. Create two arrays fronts and backs which will store the front and back elements of all deques.
  2. Iterate for all elements in the array. For each element arr[i], the current element can be pushed in a pre-existing deque if:
    • There exists a fronts[j] which is greater than arr[i] because this means that this arr[i] can be pushed in the front of this deque. But if there exists another element in between arr[i] and fronts[j] in the array arr, then it cannot be pushed because pushing will disturb the order of elements in deques such that these deques cannot be arranged in the form of a sorted array, even being individually sorted.
    • Similarly, check for the array backs using the above-mentioned step.
  3. If an element cannot be pushed to an of the deque then another deque should be created for that element. So push the element in fronts as well as in backs array because it is both the front and back of the newly created deque.
  4. Now, return the size of array fronts (or backs) as the answer to this question.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
int minDeques(vector<int> arr)
{
    // Vectors to store the front and back
    // element of all present deques
    vector<int> fronts, backs;
 
    // Iterate through all array elements
    for (int i = 0; i < arr.size(); i++) {
 
        // Bool variable to check if the array
        // element has already been pushed or not
        bool hasBeenPushed = false;
 
        for (int j = 0; j < fronts.size(); j++) {
 
            // Check for all deques where arr[i]
            // can be pushed in the front
            if (arr[i] < fronts[j]) {
                bool isSafe = true;
                for (int k = 0; k < arr.size(); k++) {
                    if (arr[i] < arr[k]
                        && arr[k] < fronts[j]) {
                        isSafe = false;
                        break;
                    }
                }
 
                // Push in front of an already
                // existing deque
                if (isSafe) {
                    fronts[j] = arr[i];
                    hasBeenPushed = true;
                    break;
                }
            }
 
            // Check for all deques where arr[i]
            // can be pushed in the back
            if (arr[i] > backs[j]) {
                bool isSafe = true;
                for (int k = 0; k < arr.size(); k++) {
                    if (arr[i] > arr[k]
                        && arr[k] > backs[j]) {
                        isSafe = false;
                        break;
                    }
                }
 
                // Push in back of an already
                // existing deque
                if (isSafe) {
                    backs[j] = arr[i];
                    hasBeenPushed = true;
                    break;
                }
            }
        }
 
        // If arr[i] cannot be pushed to any
        // of the existing deques, then push
        // it in a new deque
        if (!hasBeenPushed) {
            fronts.push_back(arr[i]);
            backs.push_back(arr[i]);
        }
    }
 
    return fronts.size();
}
 
// Driver Code
int main()
{
    vector<int> arr = { 3, 6, 0, 9, 5, 4 };
    cout << minDeques(arr);
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
public static int minDeques(int[] arr)
{
    // Vectors to store the front and back
    // element of all present deques
    ArrayList<Integer> fronts = new ArrayList<Integer>();
    ArrayList<Integer> backs = new ArrayList<Integer>();
 
    // Iterate through all array elements
    for (int i = 0; i < arr.length; i++) {
 
        // Bool variable to check if the array
        // element has already been pushed or not
        boolean hasBeenPushed = false;
 
        for (int j = 0; j < fronts.size(); j++) {
 
            // Check for all deques where arr[i]
            // can be pushed in the front
            if (arr[i] < fronts.get(j)) {
                boolean isSafe = true;
                for (int k = 0; k < arr.length; k++) {
                    if (arr[i] < arr[k]
                        && arr[k] < fronts.get(j)) {
                        isSafe = false;
                        break;
                    }
                }
 
                // Push in front of an already
                // existing deque
                if (isSafe) {
                    fronts.set(j, arr[i]);
                    hasBeenPushed = true;
                    break;
                }
            }
 
            // Check for all deques where arr[i]
            // can be pushed in the back
            if (arr[i] > backs.get(j)) {
                Boolean isSafe = true;
                for (int k = 0; k < arr.length; k++) {
                    if (arr[i] > arr[k]
                        && arr[k] > backs.get(j)) {
                        isSafe = false;
                        break;
                    }
                }
 
                // Push in back of an already
                // existing deque
                if (isSafe) {
                    backs.set(j, arr[i]);
                    hasBeenPushed = true;
                    break;
                }
            }
        }
 
        // If arr[i] cannot be pushed to any
        // of the existing deques, then push
        // it in a new deque
        if (!hasBeenPushed) {
            fronts.add(arr[i]);
            backs.add(arr[i]);
        }
    }
 
    return fronts.size();
}
 
// Driver Code
public static void main(String args[])
{
    int[] arr = { 3, 6, 0, 9, 5, 4 };
    System.out.println(minDeques(arr));
}
}
 
// This code is contributed by saurabh_jaiswal..


Python3




# python program for the above approach
def minDeques(arr):
 
        # Vectors to store the front and back
        # element of all present deques
    fronts = []
    backs = []
 
    # Iterate through all array elements
    for i in range(0, len(arr)):
 
                # Bool variable to check if the array
                # element has already been pushed or not
        hasBeenPushed = False
 
        for j in range(0, len(fronts)):
 
                        # Check for all deques where arr[i]
                        # can be pushed in the front
            if (arr[i] < fronts[j]):
                isSafe = True
                for k in range(0, len(arr)):
                    if (arr[i] < arr[k] and arr[k] < fronts[j]):
                        isSafe = False
                        break
 
                        # Push in front of an already
                        # existing deque
                if (isSafe):
                    fronts[j] = arr[i]
                    hasBeenPushed = True
                    break
 
                    # Check for all deques where arr[i]
                    # can be pushed in the back
            if (arr[i] > backs[j]):
                isSafe = True
                for k in range(0, len(arr)):
                    if (arr[i] > arr[k] and arr[k] > backs[j]):
                        isSafe = False
                        break
 
                        # Push in back of an already
                        # existing deque
                if (isSafe):
                    backs[j] = arr[i]
                    hasBeenPushed = True
                    break
 
                # If arr[i] cannot be pushed to any
                # of the existing deques, then push
                # it in a new deque
        if (not hasBeenPushed):
            fronts.append(arr[i])
            backs.append(arr[i])
 
    return len(fronts)
 
 
# Driver Code
if __name__ == "__main__":
 
    arr = [3, 6, 0, 9, 5, 4]
    print(minDeques(arr))
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
 
    static int minDeques(List<int> arr)
    {
       
        // Vectors to store the front and back
        // element of all present deques
        List<int> fronts = new List<int>();
        List<int> backs = new List<int>();
 
        // Iterate through all array elements
        for (int i = 0; i < arr.Count; i++) {
 
            // Bool variable to check if the array
            // element has already been pushed or not
            bool hasBeenPushed = false;
 
            for (int j = 0; j < fronts.Count; j++) {
 
                // Check for all deques where arr[i]
                // can be pushed in the front
                if (arr[i] < fronts[j]) {
                    bool isSafe = true;
                    for (int k = 0; k < arr.Count; k++) {
                        if (arr[i] < arr[k]
                            && arr[k] < fronts[j]) {
                            isSafe = false;
                            break;
                        }
                    }
 
                    // Push in front of an already
                    // existing deque
                    if (isSafe) {
                        fronts[j] = arr[i];
                        hasBeenPushed = true;
                        break;
                    }
                }
 
                // Check for all deques where arr[i]
                // can be pushed in the back
                if (arr[i] > backs[j]) {
                    bool isSafe = true;
                    for (int k = 0; k < arr.Count; k++) {
                        if (arr[i] > arr[k]
                            && arr[k] > backs[j]) {
                            isSafe = false;
                            break;
                        }
                    }
 
                    // Push in back of an already
                    // existing deque
                    if (isSafe) {
                        backs[j] = arr[i];
                        hasBeenPushed = true;
                        break;
                    }
                }
            }
 
            // If arr[i] cannot be pushed to any
            // of the existing deques, then push
            // it in a new deque
            if (!hasBeenPushed) {
                fronts.Add(arr[i]);
                backs.Add(arr[i]);
            }
        }
 
        return fronts.Count;
    }
 
    // Driver Code
    public static void Main()
    {
        List<int> arr = new List<int>{ 3, 6, 0, 9, 5, 4 };
        Console.WriteLine(minDeques(arr));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
// Javascript program for the above approach
function minDeques(arr)
{
 
  // Vectors to store the front and back
  // element of all present deques
  let fronts = [],
    backs = [];
 
  // Iterate through all array elements
  for (let i = 0; i < arr.length; i++)
  {
   
    // let variable to check if the array
    // element has already been pushed or not
    let hasBeenPushed = false;
 
    for (let j = 0; j < fronts.length; j++)
    {
     
      // Check for all deques where arr[i]
      // can be pushed in the front
      if (arr[i] < fronts[j]) {
        let isSafe = true;
        for (let k = 0; k < arr.length; k++) {
          if (arr[i] < arr[k] && arr[k] < fronts[j]) {
            isSafe = false;
            break;
          }
        }
 
        // Push in front of an already
        // existing deque
        if (isSafe) {
          fronts[j] = arr[i];
          hasBeenPushed = true;
          break;
        }
      }
 
      // Check for all deques where arr[i]
      // can be pushed in the back
      if (arr[i] > backs[j]) {
        let isSafe = true;
        for (let k = 0; k < arr.length; k++) {
          if (arr[i] > arr[k] && arr[k] > backs[j]) {
            isSafe = false;
            break;
          }
        }
 
        // Push in back of an already
        // existing deque
        if (isSafe) {
          backs[j] = arr[i];
          hasBeenPushed = true;
          break;
        }
      }
    }
 
    // If arr[i] cannot be pushed to any
    // of the existing deques, then push
    // it in a new deque
    if (!hasBeenPushed) {
      fronts.push(arr[i]);
      backs.push(arr[i]);
    }
  }
 
  return fronts.length;
}
 
// Driver Code
let arr = [3, 6, 0, 9, 5, 4];
document.write(minDeques(arr));
 
// This code is contributed by saurabh_jaiswal.
</script>


 
 

Output

2

 

Time Complexity: O(N^3)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
26 Oct, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments