Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIMinimum number of deletions to make a string palindrome

Minimum number of deletions to make a string palindrome

Given a string of size ‘n’. The task is to remove or delete the minimum number of characters from the string so that the resultant string is a palindrome. 

Note: The order of characters should be maintained. 

Examples : 

Input : aebcbda
Output : 2
Remove characters 'e' and 'd'
Resultant string will be 'abcba'
which is a palindromic string
Input : neveropen
Output : 8
Recommended Practice

A simple solution is to remove all subsequences one by one and check if the remaining string is palindrome or not. The time complexity of this solution is exponential.

  • Take two indexes first as ‘i’ and last as a ‘j’
  • Compare the character at the index ‘i’ and ‘j’
  • If characters are equal, then 
    • Recursively call the function by incrementing ‘i’ by ‘1’ and decrementing ‘j’ by ‘1’
  • else 
    • Recursively call the two functions, the first increment ‘i’ by ‘1’ keeping ‘j’ constant, second decrement ‘j’ by ‘1’ keeping ‘i’ constant.
    • Take a minimum of both and return by adding ‘1’

Below is the implementation of the above approach:

C++




// C++ program for above approach
#include <iostream>
using namespace std;
 
// Function to return minimum
// Element between two values
int min(int x, int y)
{
  return (x < y) ? x : y;
}
 
// Utility function for calculating
// Minimum element to delete
int utility_fun_for_del(string str,
                          int i, int j)
{
    if (i >= j)
        return 0;
 
    // Condition to compare characters
    if (str[i] == str[j])
    {
 
        // Recursive function call
        return utility_fun_for_del(str,
                                  i + 1, j - 1);
    }
 
    // Return value, incrementing by 1
    return 1 + min(utility_fun_for_del(str, i + 1, j),
                 utility_fun_for_del(str, i, j - 1));
}
 
// Function to calculate the minimum
// Element required to delete for
// Making string palindrome
int min_ele_del(string str)
{
 
    // Utility function call
    return utility_fun_for_del(str, 0,
                               str.length() - 1);
}
 
// Driver code
int main()
{
    string str = "abefbac";
    cout << "Minimum element of deletions = "
         << min_ele_del(str) << endl;
    return 0;
}
 
// This code is contributed by MOHAMMAD MUDASSIR


Java




// Java program for above approach
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to return minimum
// Element between two values
public static int min(int x, int y)
{
    return (x < y) ? x : y;
}
  
// Utility function for calculating
// Minimum element to delete
public static int utility_fun_for_del(String str,
                                      int i, int j)
{
    if (i >= j)
        return 0;
  
    // Condition to compare characters
    if (str.charAt(i) == str.charAt(j))
    {
         
        // Recursive function call
        return utility_fun_for_del(str,
                                   i + 1, j - 1);
    }
  
    // Return value, incrementing by 1
    return 1 + Math.min(utility_fun_for_del(str, i + 1, j),
                        utility_fun_for_del(str, i, j - 1));
}
  
// Function to calculate the minimum
// Element required to delete for
// Making string palindrome
public static int min_ele_del(String str)
{
     
    // Utility function call
    return utility_fun_for_del(str, 0,
                               str.length() - 1);
}
 
// Driver Code
public static void main(String[] args)
{
    String str = "abefbac";
     
    System.out.println("Minimum element of deletions = " +
                       min_ele_del(str));
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 program for above approach
 
# Utility function for calculating
# Minimum element to delete
def utility_fun_for_del(Str, i, j):
     
    if (i >= j):
        return 0
 
    # Condition to compare characters
    if (Str[i] == Str[j]):
         
        # Recursive function call
        return utility_fun_for_del(Str, i + 1,
                                        j - 1)
 
    # Return value, incrementing by 1
    # return minimum Element between two values   
    return (1 + min(utility_fun_for_del(Str, i + 1, j),
                    utility_fun_for_del(Str, i, j - 1)))
 
# Function to calculate the minimum
# Element required to delete for
# Making string palindrome
def min_ele_del(Str):
 
    # Utility function call
    return utility_fun_for_del(Str, 0,
                           len(Str) - 1)
 
# Driver code
Str = "abefbac"
 
print("Minimum element of deletions =",
       min_ele_del(Str))
 
# This code is contributed by avanitrachhadiya2155


C#




// C# program for above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to return minimum
// Element between two values
static int min(int x, int y)
{
    return (x < y) ? x : y;
}
   
// Utility function for calculating
// Minimum element to delete
static int utility_fun_for_del(string str,
                               int i, int j)
{
    if (i >= j)
        return 0;
         
    // Condition to compare characters
    if (str[i] == str[j])
    {
         
        // Recursive function call
        return utility_fun_for_del(str, i + 1,
                                        j - 1);
    }
   
    // Return value, incrementing by 1
    return 1 + Math.Min(utility_fun_for_del(
                          str, i + 1, j),
                        utility_fun_for_del(
                          str, i, j - 1));
}
   
// Function to calculate the minimum
// Element required to delete for
// Making string palindrome
static int min_ele_del(string str)
{
     
    // Utility function call
    return utility_fun_for_del(str, 0,
                               str.Length - 1);
}
 
// Driver code   
static void Main()
{
    string str = "abefbac";
  
    Console.WriteLine("Minimum element of " +
                      "deletions = " +
                      min_ele_del(str));
}
}
 
// This code is contributed by divyesh072019


Javascript




<script>
    // Javascript program for above approach
     
    // Function to return minimum
    // Element between two values
    function min(x, y)
    {
        return (x < y) ? x : y;
    }
 
    // Utility function for calculating
    // Minimum element to delete
    function utility_fun_for_del(str, i, j)
    {
        if (i >= j)
            return 0;
 
        // Condition to compare characters
        if (str[i] == str[j])
        {
 
            // Recursive function call
            return utility_fun_for_del(str, i + 1,
                                            j - 1);
        }
 
        // Return value, incrementing by 1
        return 1 + Math.min(utility_fun_for_del(
                              str, i + 1, j),
                            utility_fun_for_del(
                              str, i, j - 1));
    }
 
    // Function to calculate the minimum
    // Element required to delete for
    // Making string palindrome
    function min_ele_del(str)
    {
 
        // Utility function call
        return utility_fun_for_del(str, 0, str.length - 1);
    }
     
    let str = "abefbac";
   
    document.write("Minimum element of " +
                      "deletions = " +
                      min_ele_del(str));
 
// This code is contributed by mukesh07.
</script>


Output

Minimum element of deletions = 2




Time complexity: O(2^n), the time complexity of this solution is exponential as it requires a recursive approach to solve the problem. There are two recursive calls in each step and hence the time complexity is O(2^n).
Auxiliary Space: O(n), the space complexity of this solution is linear as the recursive calls are stored in the stack frames and the maximum depth of the recursion tree can be n.

Approach: Top-down dynamic programming

Below is the implementation:

C++




#include<bits/stdc++.h>
using namespace std;
 
int dp[2000][2000];
 
// Function definition
int transformation(string s1, string s2,
                   int i, int j)
{
     
    // Base cases
    if (i >= (s1.size()) || j >= (s2.size()))
        return 0;
     
    // Checking the desired condition
    if (s1[i] == s2[j])
    {
         
        // If yes increment the count
        dp[i][j] = 1 + transformation(s1, s2, i + 1,
                                              j + 1);
    }
     
    // If no   
    if (dp[i][j] != -1)
    {
         
        // Return the value from the table
        return dp[i][j];
    }
     
    // Else store the max transformation
    // from the subsequence
    else
        dp[i][j] = max(transformation(s1, s2, i, j + i),
                       transformation(s1, s2, i + 1, j));
     
    // Return the dp [-1][-1]   
    return dp[s1.size() - 1][s2.size() - 1];
}
 
// Driver code
int main()
{
    string s1 = "neveropen";
    string s2 = "neveropen";
    int i = 0;
    int j = 0;
     
    // Initialize the array with -1
    memset(dp, -1, sizeof dp);
     
    cout << "MINIMUM NUMBER OF DELETIONS: "
         << (s1.size()) - transformation(s1, s2, 0, 0)
         << endl;
    cout << "MINIMUM NUMBER OF INSERTIONS: "
         << (s2.size()) - transformation(s1, s2, 0, 0)
         << endl;
    cout << ("LCS LENGTH: ")
         << transformation(s1, s2, 0, 0);
}
 
// This code is contributed by Stream_Cipher


Java




import java.util.*;
public class GFG
{
    static int dp[][] = new int[2000][2000];
   
    // Function definition
    public static int transformation(String s1,
                                     String s2,
                                     int i, int j)
    {
       
        // Base cases
        if(i >= s1.length() || j >= s2.length())
        {
            return 0;
        }
         
        // Checking the desired condition
        if(s1.charAt(i) == s2.charAt(j))
        {
           
            // If yes increment the count
            dp[i][j] = 1 + transformation(s1, s2, i + 1, j + 1);
        }
         
        // If no 
        if(dp[i][j] != -1)
        {
           
            // Return the value from the table
            return dp[i][j];
        }
       
        // Else store the max transformation
        // from the subsequence
        else
        {
            dp[i][j] = Math.max(transformation(s1, s2, i, j + i),
                                transformation(s1, s2, i + 1, j));
        }
         
        // Return the dp [-1][-1]   
        return dp[s1.length() - 1][s2.length() - 1];
    }
     
    // Driver code
     public static void main(String []args)
     {
        String s1 = "neveropen";
        String s2 = "neveropen";
        int i = 0;
        int j = 0;
         
        // Initialize the array with -1
        for (int[] row: dp)
        {Arrays.fill(row, -1);}
         
        System.out.println("MINIMUM NUMBER OF DELETIONS: " +
                           (s1.length() - transformation(s1, s2, 0, 0)));
        System.out.println("MINIMUM NUMBER OF INSERTIONS: " +
                           (s2.length() - transformation(s1, s2, 0, 0)));
        System.out.println("LCS LENGTH: " +
                           transformation(s1, s2, 0, 0));
     }
}
 
// This code is contributed by avanitrachhadiya2155


Python3




# function definition
def transformation(s1,s2,i,j,dp):
     
     # base cases
    if i>=len(s1) or j>=len(s2):
        return 0
     
    # checking the desired condition
    if s1[i]==s2[j]:
         
        # if yes increment the count
        dp[i][j]=1+transformation(s1,s2,i+1,j+1,dp)
         
    # if no   
    if dp[i][j]!=-1:
         
        #return the value from the table
        return dp[i][j]
     
    # else store the max transformation
    # from the subsequence
    else:
        dp[i][j]=max(transformation(s1,s2,i,j+i,dp),
                     transformation(s1,s2,i+1,j,dp))
         
    # return the dp [-1][-1]   
    return dp[-1][-1]
 
                      
 
s1 = "neveropen"
s2 = "neveropen"
i=0
j=0
 
#initialize the array with -1
dp=[[-1 for _ in range(len(s1)+1)] for _ in range(len(s2)+1)]
print("MINIMUM NUMBER OF DELETIONS: ",
      len(s1)-transformation(s1,s2,0,0,dp),
      end=" ")
print("MINIMUM NUMBER OF INSERTIONS: ",
      len(s2)-transformation(s1,s2,0,0,dp),
      end=" " )
print("LCS LENGTH: ",transformation(s1,s2,0,0,dp))
 
#code contributed by saikumar kudikala


C#




using System;
 
class GFG{
     
static int[,] dp = new int[2000, 2000];
 
// Function definition
static int transformation(string s1, string s2,
                          int i, int j )
{
     
    // Base cases
    if (i >= (s1.Length) || j >= (s2.Length))
    {
        return 0;
    }
     
    // Checking the desired condition
    if (s1[i] == s2[j])
    {
         
        // If yes increment the count
        dp[i, j] = 1 + transformation(s1, s2,
                                      i + 1, j + 1);
    }
     
    // If no 
    if (dp[i, j] != -1)
    {
         
        // Return the value from the table
        return dp[i, j];
         
    }
     
    // Else store the max transformation
    // from the subsequence
    else
    {
        dp[i, j] = Math.Max(transformation(s1, s2, i,
                                           j + i),
                            transformation(s1, s2,
                                           i + 1, j));
    }
     
    // Return the dp [-1][-1]   
    return dp[s1.Length - 1, s2.Length - 1];
}
 
// Driver code
static public void Main()
{
    string s1 = "neveropen";
    string s2 = "neveropen";
     
    // Initialize the array with -1
    for(int m = 0; m < 2000; m++ )
    {
        for(int n = 0; n < 2000; n++)
        {
            dp[m, n] = -1;
        }
    }
    Console.WriteLine("MINIMUM NUMBER OF DELETIONS: " +
       (s1.Length-transformation(s1, s2, 0, 0)));
    Console.WriteLine("MINIMUM NUMBER OF INSERTIONS: " +
       (s2.Length-transformation(s1, s2, 0, 0)));
    Console.WriteLine("LCS LENGTH: " +
       transformation(s1, s2, 0, 0));
}
}
 
// This code is contributed by rag2127


Javascript




<script>
 
let dp = new Array(2000);
 
// Function definition
function transformation(s1, s2, i, j)
{
     
    // Base cases
    if(i >= s1.length || j >= s2.length)
    {
        return 0;
    }
     
    // Checking the desired condition
    if (s1[i] == s2[j])
    {
         
        // If yes increment the count
        dp[i][j] = 1 + transformation(s1, s2, i + 1,
                                              j + 1);
    }
      
    // If no
    if (dp[i][j] != -1)
    {
         
        // Return the value from the table
        return dp[i][j];
    }
    
    // Else store the max transformation
    // from the subsequence
    else
    {
        dp[i][j] = Math.max(transformation(s1, s2, i, j + i),
                            transformation(s1, s2, i + 1, j));
    }
      
    // Return the dp [-1][-1]  
    return dp[s1.length - 1][s2.length - 1];
}
 
// Driver code
let s1 = "neveropen";
let s2 = "neveropen";
let i = 0;
let j = 0;
 
// Initialize the array with -1
for(let row = 0; row < dp.length; row++)
{
    dp[row] = new Array(dp.length);
    for(let column = 0;
            column < dp.length;
            column++)
    {
        dp[row][column] = -1;
    }
}
 
document.write("MINIMUM NUMBER OF DELETIONS: " +
              (s1.length - transformation(s1, s2, 0, 0)));
document.write(" MINIMUM NUMBER OF INSERTIONS: " +
              (s2.length - transformation(s1, s2, 0, 0)));
document.write(" LCS LENGTH: " +
               transformation(s1, s2, 0, 0));
                
// This code is contributed by rameshtravel07 
 
</script>


Output:

MINIMUM NUMBER OF DELETIONS:  8 MINIMUM NUMBER OF INSERTIONS:  0 LCS LENGTH:  5

Time Complexity: O(N^K)
Auxiliary Space: O(2000*2000)

Efficient Approach: It uses the concept of finding the length of the longest palindromic subsequence of a given sequence. 

Below is the implementation of the approach:

C++




// C++ implementation to find
// minimum number of deletions
// to make a string palindromic
#include <bits/stdc++.h>
using namespace std;
 
// Returns the length of
// the longest palindromic
// subsequence in 'str'
int lps(string str)
{
    int n = str.size();
 
    // Create a table to store
    // results of subproblems
    int L[n][n];
 
    // Strings of length 1
    // are palindrome of length 1
    for (int i = 0; i < n; i++)
        L[i][i] = 1;
 
    // Build the table. Note that
    // the lower diagonal values
    // of table are useless and
    // not filled in the process.
    // c1 is length of substring
    for (int cl = 2; cl <= n; cl++)
    {
        for (int i = 0;
                 i < n - cl + 1; i++)
        {
            int j = i + cl - 1;
            if (str[i] == str[j] &&
                        cl == 2)
                L[i][j] = 2;
            else if (str[i] == str[j])
                L[i][j] = L[i + 1][j - 1] + 2;
            else
                L[i][j] = max(L[i][j - 1],
                            L[i + 1][j]);
        }
    }
 
    // length of longest
    // palindromic subseq
    return L[0][n - 1];
}
 
// function to calculate
// minimum number of deletions
int minimumNumberOfDeletions(string str)
{
    int n = str.size();
 
    // Find longest palindromic
    // subsequence
    int len = lps(str);
 
    // After removing characters
    // other than the lps, we
    // get palindrome.
    return (n - len);
}
 
// Driver Code
int main()
{
    string str = "neveropen";
    cout << "Minimum number of deletions = "
         << minimumNumberOfDeletions(str);
    return 0;
}


Java




// Java implementation to
// find minimum number of
// deletions to make a
// string palindromic
class GFG
{
    // Returns the length of
    // the longest palindromic
    // subsequence in 'str'
    static int lps(String str)
    {
        int n = str.length();
 
        // Create a table to store
        // results of subproblems
        int L[][] = new int[n][n];
 
        // Strings of length 1
        // are palindrome of length 1
        for (int i = 0; i < n; i++)
            L[i][i] = 1;
 
        // Build the table. Note
        // that the lower diagonal
        // values of table are useless
        // and not filled in the process.
        // c1 is length of substring
        for (int cl = 2; cl <= n; cl++)
        {
            for (int i = 0; i < n - cl + 1; i++)
            {
                int j = i + cl - 1;
                if (str.charAt(i) ==
                        str.charAt(j) && cl == 2)
                    L[i][j] = 2;
                else if (str.charAt(i) ==
                              str.charAt(j))
                    L[i][j] = L[i + 1][j - 1] + 2;
                else
                    L[i][j] = Integer.max(L[i][j - 1],
                                         L[i + 1][j]);
            }
        }
 
        // length of longest
        // palindromic subsequence
        return L[0][n - 1];
    }
 
    // function to calculate minimum
    // number of deletions
    static int minimumNumberOfDeletions(String str)
    {
        int n = str.length();
 
        // Find longest palindromic
        // subsequence
        int len = lps(str);
 
        // After removing characters
        // other than the lps, we get
        // palindrome.
        return (n - len);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String str = "neveropen";
        System.out.println("Minimum number " +
                            "of deletions = "+
               minimumNumberOfDeletions(str));
    }
}
 
// This code is contributed by Sumit Ghosh


Python3




# Python3 implementation to find
# minimum number of deletions
# to make a string palindromic
  
# Returns the length of
# the longest palindromic
# subsequence in 'str'
def lps(str):
    n = len(str)
  
    # Create a table to store
    # results of subproblems
    L = [[0 for x in range(n)]for y in range(n)]
  
    # Strings of length 1
    # are palindrome of length 1
    for i in range(n):
        L[i][i] = 1
  
    # Build the table. Note that
    # the lower diagonal values
    # of table are useless and
    # not filled in the process.
    # c1 is length of substring
    for cl in range( 2, n+1):
        for i in range(n - cl + 1):
            j = i + cl - 1
            if (str[i] == str[j] and cl == 2):
                L[i][j] = 2
            elif (str[i] == str[j]):
                L[i][j] = L[i + 1][j - 1] + 2
            else:
                L[i][j] = max(L[i][j - 1],L[i + 1][j])
  
    # length of longest
    # palindromic subseq
    return L[0][n - 1]
  
# function to calculate
# minimum number of deletions
def minimumNumberOfDeletions( str):
 
    n = len(str)
  
    # Find longest palindromic
    # subsequence
    l = lps(str)
  
    # After removing characters
    # other than the lps, we
    # get palindrome.
    return (n - l)
  
# Driver Code
if __name__ == "__main__":
     
    str = "neveropen"
    print( "Minimum number of deletions = "
         , minimumNumberOfDeletions(str))


C#




// C# implementation to find
// minimum number of deletions
// to make a string palindromic
using System;
 
class GFG
{
    // Returns the length of
    // the longest palindromic
    // subsequence in 'str'
    static int lps(String str)
    {
        int n = str.Length;
 
        // Create a table to store
        // results of subproblems
        int [,]L = new int[n, n];
 
        // Strings of length 1
        // are palindrome of length 1
        for (int i = 0; i < n; i++)
            L[i, i] = 1;
 
        // Build the table. Note
        // that the lower diagonal
        // values of table are useless
        // and not filled in the process.
        // c1 is length of substring
        for (int cl = 2; cl <= n; cl++)
        {
            for (int i = 0; i < n - cl + 1; i++)
            {
                int j = i + cl - 1;
                if (str[i] == str[j] && cl == 2)
                    L[i, j] = 2;
                else if (str[i] == str[j])
                    L[i, j] = L[i + 1, j - 1] + 2;
                else
                    L[i, j] = Math.Max(L[i, j - 1],
                                      L[i + 1, j]);
            }
        }
 
        // length of longest
        // palindromic subsequence
        return L[0, n - 1];
    }
 
    // function to calculate minimum
    // number of deletions
    static int minimumNumberOfDeletions(string str)
    {
        int n = str.Length;
 
        // Find longest palindromic
        // subsequence
        int len = lps(str);
 
        // After removing characters
        // other than the lps, we get
        // palindrome.
        return (n - len);
    }
 
    // Driver Code
    public static void Main()
    {
        string str = "neveropen";
        Console.Write("Minimum number of" +
                          " deletions = " +
            minimumNumberOfDeletions(str));
    }
}
 
// This code is contributed by nitin mittal.


Javascript




<script>
 
  // JavaScript implementation to
  // find minimum number of
  // deletions to make a
  // string palindromic
   
  // Returns the length of
  // the longest palindromic
  // subsequence in 'str'
  function lps(str)
  {
      let n = str.length;
 
      // Create a table to store
      // results of subproblems
      let L = new Array(n);
      for (let i = 0; i < n; i++)
      {
        L[i] = new Array(n);
        for (let j = 0; j < n; j++)
        {
          L[i][j] = 0;
        }
      }
 
      // Strings of length 1
      // are palindrome of length 1
      for (let i = 0; i < n; i++)
          L[i][i] = 1;
 
      // Build the table. Note
      // that the lower diagonal
      // values of table are useless
      // and not filled in the process.
      // c1 is length of substring
      for (let cl = 2; cl <= n; cl++)
      {
          for (let i = 0; i < n - cl + 1; i++)
          {
              let j = i + cl - 1;
              if (str[i] == str[j] && cl == 2)
                  L[i][j] = 2;
              else if (str[i] == str[j])
                  L[i][j] = L[i + 1][j - 1] + 2;
              else
                  L[i][j] = Math.max(L[i][j - 1], L[i + 1][j]);
          }
      }
 
      // length of longest
      // palindromic subsequence
      return L[0][n - 1];
  }
 
  // function to calculate minimum
  // number of deletions
  function minimumNumberOfDeletions(str)
  {
      let n = str.length;
 
      // Find longest palindromic
      // subsequence
      let len = lps(str);
 
      // After removing characters
      // other than the lps, we get
      // palindrome.
      return (n - len);
  }
   
  let str = "neveropen";
  document.write("Minimum number " + "of deletions = "+
  minimumNumberOfDeletions(str));
     
</script>


PHP




<?php
// PHP implementation to find
// minimum number of deletions
// to make a string palindromic
 
// Returns the length of
// the longest palindromic
// subsequence in 'str'
function lps($str)
{
    $n = strlen($str);
 
    // Create a table to store
    // results of subproblems
    $L;
 
    // Strings of length 1
    // are palindrome of length 1
    for ($i = 0; $i < $n; $i++)
        $L[$i][$i] = 1;
 
    // Build the table. Note that
    // the lower diagonal values
    // of table are useless and
    // not filled in the process.
    // c1 is length of substring
    for ($cl = 2; $cl <= $n; $cl++)
    {
        for ( $i = 0;
              $i < $n -$cl + 1;
              $i++)
        {
            $j = $i + $cl - 1;
            if ($str[$i] == $str[$j] &&
                            $cl == 2)
                $L[$i][$j] = 2;
            else if ($str[$i] == $str[$j])
                $L[$i][$j] =
                        $L[$i + 1][$j - 1] + 2;
             
            else
                $L[$i][$j] = max($L[$i][$j - 1],
                                $L[$i + 1][$j]);
        }
    }
 
    // length of longest
    // palindromic subseq
    return $L[0][$n - 1];
}
 
// function to calculate minimum
// number of deletions
function minimumNumberOfDeletions($str)
{
    $n = strlen($str);
 
    // Find longest
    // palindromic subsequence
    $len = lps($str);
 
    // After removing characters
    // other than the lps, we get
    // palindrome.
    return ($n - $len);
}
 
// Driver Code
{
    $str = "neveropen";
    echo "Minimum number of deletions = ",
           minimumNumberOfDeletions($str);
    return 0;
}
 
// This code is contributed by nitin mittal.
?>


Output

Minimum number of deletions = 8




Time Complexity: O(n^2),as the LPS subproblem is solved using dynamic programming.
Auxiliary Space: O(n^2) as a 2D array of size nxn is used to store the subproblems.

Efficient Approach: Space optimization

In the previous approach, the current value dp[i][j] only depends upon the current and previous row values of DP. So to optimize the space complexity we use a single 1D array to store the computations.

Implementation:

C++




// C++ implementation to find
// minimum number of deletions
// to make a string palindromic
 
#include <bits/stdc++.h>
using namespace std;
 
// Returns the length of
// the longest palindromic
// subsequence in 'str'
int lps(string str)
{
    int n = str.size();
     
    // array to store computation
    // of subproblems
    int L[n];
     
    // iterate over subproblems to get the current
    // value from previous computation
    for (int i = n - 1; i >= 0; i--)
    {  
        // to store previous values
        int back_up = 0;
        for (int j = i; j < n; j++)
        {
            if (j == i)
                L[j] = 1;
            else if (str[i] == str[j])
            {
                int temp = L[j];
                L[j] = back_up + 2;
                back_up = temp;
            }
            else
            {
                back_up = L[j];
                L[j] = max(L[j], L[j - 1]);
            }
        }
    }
     
    // return final answer
    return L[n - 1];
}
     
// function to calculate
// minimum number of deletions
int minimumNumberOfDeletions(string str)
{
 
    int n = str.size();
     
    // Find longest palindromic
    // subsequence
    int len = lps(str);
 
    // After removing characters
    // other than the lps, we
    // get palindrome.
    return (n - len);
}
 
// Driver Code
int main()
{
    string str = "neveropen";
    cout << "Minimum number of deletions = " << minimumNumberOfDeletions(str);
    return 0;
}
// -- by bhardwajji


Java




public class Main {
    // Returns the length of the longest palindromic subsequence in 'str'
    static int lps(String str) {
        int n = str.length();
 
        // Array to store computation of subproblems
        int[] L = new int[n];
 
        // Iterate over subproblems to get the current value from previous computation
        for (int i = n - 1; i >= 0; i--) {
            // To store previous values
            int back_up = 0;
            for (int j = i; j < n; j++) {
                if (j == i)
                    L[j] = 1;
                else if (str.charAt(i) == str.charAt(j)) {
                    int temp = L[j];
                    L[j] = back_up + 2;
                    back_up = temp;
                } else {
                    back_up = L[j];
                    L[j] = Math.max(L[j], L[j - 1]);
                }
            }
        }
 
        // Return final answer
        return L[n - 1];
    }
 
    // Function to calculate minimum number of deletions
    static int minimumNumberOfDeletions(String str) {
        int n = str.length();
 
        // Find longest palindromic subsequence
        int len = lps(str);
 
        // After removing characters other than the lps, we get a palindrome.
        return (n - len);
    }
 
    // Driver Code
    public static void main(String[] args) {
        String str = "neveropen";
        System.out.println("Minimum number of deletions = " + minimumNumberOfDeletions(str));
    }
}
 
// This code is contributed by rambabuguphka


C#




using System;
 
class Program
{
    // Returns the length of
    // the longest palindromic
    // subsequence in 'str'
    static int LPS(string str)
    {
        int n = str.Length;
 
        // array to store computation
        // of subproblems
        int[] L = new int[n];
 
        // iterate over subproblems to get the current
        // value from previous computation
        for (int i = n - 1; i >= 0; i--)
        {
            // to store previous values
            int back_up = 0;
            for (int j = i; j < n; j++)
            {
                if (j == i)
                    L[j] = 1;
                else if (str[i] == str[j])
                {
                    int temp = L[j];
                    L[j] = back_up + 2;
                    back_up = temp;
                }
                else
                {
                    back_up = L[j];
                    L[j] = Math.Max(L[j], L[j - 1]);
                }
            }
        }
 
        // return final answer
        return L[n - 1];
    }
 
    // function to calculate
    // minimum number of deletions
    static int MinimumNumberOfDeletions(string str)
    {
        int n = str.Length;
 
        // Find longest palindromic
        // subsequence
        int len = LPS(str);
 
        // After removing characters
        // other than the lps, we
        // get palindrome.
        return (n - len);
    }
 
    // Driver Code
    static void Main()
    {
        string str = "neveropen";
        Console.WriteLine("Minimum number of deletions = " + MinimumNumberOfDeletions(str));
    }
}


Javascript




// Function to calculate the length of the longest palindromic subsequence in 'str'
function lps(str) {
    const n = str.length;
 
    // Array to store computation of subproblems
    const L = new Array(n).fill(0);
 
    // Iterate over subproblems to get the current value from previous computation
    for (let i = n - 1; i >= 0; i--) {
        // To store previous values
        let back_up = 0;
 
        for (let j = i; j < n; j++) {
            if (j === i) {
                L[j] = 1;
            } else if (str[i] === str[j]) {
                const temp = L[j];
                L[j] = back_up + 2;
                back_up = temp;
            } else {
                back_up = L[j];
                L[j] = Math.max(L[j], L[j - 1]);
            }
        }
    }
 
    // Return final answer
    return L[n - 1];
}
 
// Function to calculate the minimum number of deletions
function minimumNumberOfDeletions(str) {
    const n = str.length;
 
    // Find longest palindromic subsequence
    const len = lps(str);
 
    // After removing characters other than the lps, we get palindrome.
    return n - len;
}
 
// Driver Code
const str = "neveropen";
console.log("Minimum number of deletions =", minimumNumberOfDeletions(str));


Output

Minimum number of deletions = 8


Time Complexity: O(n^2).
Auxiliary Space: O(n) 

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments