Given two strings ‘str1’ and ‘str2’ of size m and n respectively. The task is to remove/delete and insert the minimum number of characters from/in str1 to transform it into str2. It could be possible that the same character needs to be removed/deleted from one point of str1 and inserted at some another point.
Example 1:
Input :
str1 = "heap", str2 = "pea"
Output :
Minimum Deletion = 2 and
Minimum Insertion = 1
Explanation:
p and h deleted from heap
Then, p is inserted at the beginning
One thing to note, though p was required yet
it was removed/deleted first from its position and
then it is inserted to some other position.
Thus, p contributes one to the deletion_count
and one to the insertion_count.
Example 2:
Input :
str1 = "neveropen", str2 = "neveropen"
Output :
Minimum Deletion = 8
Minimum Insertion = 0
Simple Approach:
A simple approach is to consider all subsequences of str1 and for each subsequence calculate minimum deletions and insertions so as to transform it into str2. A very complex method and the time complexity of this solution is exponential.
Efficient Approach:
An efficient approach uses the concept of finding the length of the longest common subsequence of the given two sequences.
Algorithm:
- str1 and str2 be the given strings.
- m and n be their lengths respectively.
- len be the length of the longest common subsequence of str1 and str2
- minimum number of deletions minDel = m – len (as we only need to delete from str1 because we are reducing it to str2)
- minimum number of Insertions minInsert = n – len (as we are inserting x in str1 , x is a number of characters in str2 which are not taking part in the string which is longest common subsequence )
Below is the implementation of the above code:
C++
// Dynamic Programming C++ implementation to find // minimum number of deletions and insertions #include <bits/stdc++.h> using namespace std; // Returns length of longest common subsequence // for str1[0..m-1], str2[0..n-1] int lcs(string str1, string str2, int m, int n) { int L[m + 1][n + 1]; int i, j; // Following steps build L[m+1][n+1] in bottom // up fashion. Note that L[i][j] contains // length of LCS of str1[0..i-1] and str2[0..j-1] for (i = 0; i <= m; i++) { for (j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (str1.at(i - 1) == str2.at(j - 1)) L[i][j] = L[i - 1][j - 1] + 1; else L[i][j] = max(L[i - 1][j], L[i][j - 1]); } } // L[m][n] contains length of LCS // for X[0..n-1] and Y[0..m-1] return L[m][n]; } // function to find minimum number // of deletions and insertions void printMinDelAndInsert(string str1, string str2) { int m = str1.size(); int n = str2.size(); int len = lcs(str1, str2, m, n); cout << "Minimum number of deletions = " << (m - len) << endl; cout << "Minimum number of insertions = " << (n - len) << endl; } // Driver Code int main() { string str1 = "heap" ; string str2 = "pea" ; // Function Call printMinDelAndInsert(str1, str2); return 0; } |
Java
// Dynamic Programming Java implementation // to find minimum number of deletions and // insertions import java.io.*; class GFG { // Returns length of length common // subsequence for str1[0..m-1], // str2[0..n-1] static int lcs(String str1, String str2, int m, int n) { int L[][] = new int [m + 1 ][n + 1 ]; int i, j; // Following steps build L[m+1][n+1] in // bottom up fashion. Note that L[i][j] // contains length of LCS of str1[0..i-1] // and str2[0..j-1] for (i = 0 ; i <= m; i++) { for (j = 0 ; j <= n; j++) { if (i == 0 || j == 0 ) L[i][j] = 0 ; else if (str1.charAt(i - 1 ) == str2.charAt(j - 1 )) L[i][j] = L[i - 1 ][j - 1 ] + 1 ; else L[i][j] = Math.max(L[i - 1 ][j], L[i][j - 1 ]); } } // L[m][n] contains length of LCS // for X[0..n-1] and Y[0..m-1] return L[m][n]; } // function to find minimum number // of deletions and insertions static void printMinDelAndInsert(String str1, String str2) { int m = str1.length(); int n = str2.length(); int len = lcs(str1, str2, m, n); System.out.println( "Minimum number of " + "deletions = " ); System.out.println(m - len); System.out.println( "Minimum number of " + "insertions = " ); System.out.println(n - len); } // Driver code public static void main(String[] args) { String str1 = new String( "heap" ); String str2 = new String( "pea" ); // Function Call printMinDelAndInsert(str1, str2); } } // This code is contributed by Prerna Saini |
Python3
# Dynamic Programming Python3 # implementation to find minimum # number of deletions and insertions # Returns length of length # common subsequence for # str1[0..m-1], str2[0..n-1] def lcs(str1, str2, m, n): L = [[ 0 for i in range (n + 1 )] for i in range (m + 1 )] # Following steps build L[m+1][n+1] # in bottom up fashion. Note that # L[i][j] contains length of LCS # of str1[0..i-1] and str2[0..j-1] for i in range (m + 1 ): for j in range (n + 1 ): if (i = = 0 or j = = 0 ): L[i][j] = 0 elif (str1[i - 1 ] = = str2[j - 1 ]): L[i][j] = L[i - 1 ][j - 1 ] + 1 else : L[i][j] = max (L[i - 1 ][j], L[i][j - 1 ]) # L[m][n] contains length of LCS # for X[0..n-1] and Y[0..m-1] return L[m][n] # function to find minimum number # of deletions and insertions def printMinDelAndInsert(str1, str2): m = len (str1) n = len (str2) leng = lcs(str1, str2, m, n) print ( "Minimum number of deletions = " , m - leng, sep = ' ' ) print ( "Minimum number of insertions = " , n - leng, sep = ' ' ) # Driver Code str1 = "heap" str2 = "pea" # Function Call printMinDelAndInsert(str1, str2) # This code is contributed # by sahilshelangia |
C#
// Dynamic Programming C# implementation // to find minimum number of deletions and // insertions using System; class GFG { // Returns length of length common // subsequence for str1[0..m-1], // str2[0..n-1] static int lcs( string str1, string str2, int m, int n) { int [, ] L = new int [m + 1, n + 1]; int i, j; // Following steps build L[m+1][n+1] in // bottom up fashion. Note that L[i][j] // contains length of LCS of str1[0..i-1] // and str2[0..j-1] for (i = 0; i <= m; i++) { for (j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i, j] = 0; else if (str1[i - 1] == str2[j - 1]) L[i, j] = L[i - 1, j - 1] + 1; else L[i, j] = Math.Max(L[i - 1, j], L[i, j - 1]); } } // L[m][n] contains length of LCS // for X[0..n-1] and Y[0..m-1] return L[m, n]; } // function to find minimum number // of deletions and insertions static void printMinDelAndInsert( string str1, string str2) { int m = str1.Length; int n = str2.Length; int len = lcs(str1, str2, m, n); Console.Write( "Minimum number of " + "deletions = " ); Console.WriteLine(m - len); Console.Write( "Minimum number of " + "insertions = " ); Console.Write(n - len); } // Driver code public static void Main() { string str1 = new string ( "heap" ); string str2 = new string ( "pea" ); // Function Call printMinDelAndInsert(str1, str2); } } // This code is contributed by nitin mittal. |
Javascript
<script> // Dynamic Programming Javascript implementation // to find minimum number of deletions and // insertions // Returns length of length common // subsequence for str1[0..m-1], // str2[0..n-1] function lcs(str1, str2, m, n) { let L = new Array(m + 1); let i, j; for (i = 0; i <= m; i++) { L[i] = new Array(n + 1); for (j = 0; j <= n; j++) { L[i][j] = 0; } } // Following steps build L[m+1][n+1] in // bottom up fashion. Note that L[i][j] // contains length of LCS of str1[0..i-1] // and str2[0..j-1] for (i = 0; i <= m; i++) { for (j = 0; j <= n; j++) { if (i == 0 || j == 0) L[i][j] = 0; else if (str1[i - 1] == str2[j - 1]) L[i][j] = L[i - 1][j - 1] + 1; else L[i][j] = Math.max(L[i - 1][j], L[i][j - 1]); } } // L[m][n] contains length of LCS // for X[0..n-1] and Y[0..m-1] return L[m][n]; } // function to find minimum number // of deletions and insertions function printMinDelAndInsert(str1, str2) { let m = str1.length; let n = str2.length; let len = lcs(str1, str2, m, n); document.write( "Minimum number of " + "deletions = " ); document.write((m - len) + "</br>" ); document.write( "Minimum number of " + "insertions = " ); document.write((n - len) + "</br>" ); } let str1 = "heap" ; let str2 = "pea" ; // Function Call printMinDelAndInsert(str1, str2); // This code is contributed by rameshtravel07. </script> |
Minimum number of deletions = 2 Minimum number of insertions = 1
Time Complexity: O(m * n)
Auxiliary Space: O(m * n)
Method 2: Top-down approach using memoization
This method also uses the idea of finding the length of the longest common subsequence of the given two sequences. But this approach is using a top-down approach using memoization.
C++
// Dynamic Programming C++ implementation to find // minimum number of deletions and insertions // using memoization technique #include <bits/stdc++.h> using namespace std; int dp[1001][1001]; // Returns length of longest common subsequence int lcs(string& s1, string& s2, int i, int j) { if (i == 0 || j == 0) { return 0; } if (dp[i][j] != -1) { return dp[i][j]; } if (s1[i - 1] == s2[j - 1]) { return dp[i][j] = 1 + lcs(s1, s2, i - 1, j - 1); } else { return dp[i][j] = max(lcs(s1, s2, i, j - 1), lcs(s1, s2, i - 1, j)); } } // function to find minimum number // of deletions and insertions void printMinDelAndInsert(string str1, string str2) { int m = str1.size(); int n = str2.size(); dp[m][n]; // initialising dp array as -1 memset (dp, -1, sizeof (dp)); int len = lcs(str1, str2, m, n); cout << "Minimum number of deletions = " << (m - len) << endl; cout << "Minimum number of insertions = " << (n - len) << endl; } // driver code int main() { string str1 = "heap" ; string str2 = "pea" ; // Function Call printMinDelAndInsert(str1, str2); return 0; } // This code is contributed by Arun Bang. |
Java
// Dynamic Programming Java implementation // to find minimum number of deletions and // insertions import java.io.*; import java.util.Arrays; class GFG { public static int dp[][]= new int [ 1001 ][ 1001 ]; static int lcs(String str1, String str2, int i, int j) { if (i == 0 || j == 0 ) { return 0 ; } if (dp[i][j] != - 1 ) { return dp[i][j]; } if (str1.charAt(i - 1 ) == str2.charAt(j - 1 )) { return dp[i][j] = 1 + lcs(str1, str2, i - 1 , j - 1 ); } else { return dp[i][j] = Math.max(lcs(str1, str2, i, j - 1 ), lcs(str1, str2, i - 1 , j)); } } // function to find minimum number // of deletions and insertions static void printMinDelAndInsert(String str1, String str2) { int m = str1.length(); int n = str2.length(); int len = lcs(str1, str2, m, n); System.out.println( "Minimum number of " + "deletions = " +(m - len)); System.out.println( "Minimum number of " + "insertions = " +(n - len)); } // Driver code public static void main(String[] args) { String str1 = new String( "heap" ); String str2 = new String( "pea" ); for ( int i= 0 ;i< 1001 ;i++){ Arrays.fill(dp[i],- 1 ); } // Function Call printMinDelAndInsert(str1, str2); } } // This code is contributed by nikitamehrotra99. |
Python3
# Dynamic Programming C++ implementation to find # minimum number of deletions and insertions # using memoization technique dp = [[ - 1 for i in range ( 1001 )] for j in range ( 1001 )] # Returns length of longest common subsequence def lcs(s1, s2, i, j): if i = = 0 or j = = 0 : return 0 if dp[i][j] ! = - 1 : return dp[i][j] if s1[i - 1 ] = = s2[j - 1 ]: dp[i][j] = 1 + lcs(s1, s2, i - 1 , j - 1 ) return dp[i][j] else : dp[i][j] = max (lcs(s1, s2, i, j - 1 ), lcs(s1, s2, i - 1 , j)) return dp[i][j] # function to find minimum number # of deletions and insertions def printMinDelAndInsert(str1, str2): m = len (str1) n = len (str2) # initialising dp array as -1 dp = [[ - 1 for i in range (n)] for j in range (m)] length = lcs(str1, str2, m, n) print ( "Minimum number of deletions = " , (m - length)) print ( "Minimum number of insertions = " , (n - length)) # driver code if __name__ = = "__main__" : str1 = "heap" str2 = "pea" # Function Call printMinDelAndInsert(str1, str2) # This code is contributed by Vivek Maddeshiya |
C#
using System; namespace MinDelAndInsert { class Program { static int [, ] dp = new int [1001, 1001]; // Returns length of longest common subsequence static int lcs( string s1, string s2, int i, int j) { if (i == 0 || j == 0) { return 0; } if (dp[i, j] != -1) { return dp[i, j]; } if (s1[i - 1] == s2[j - 1]) { return dp[i, j] = 1 + lcs(s1, s2, i - 1, j - 1); } else { return dp[i, j] = Math.Max(lcs(s1, s2, i, j - 1), lcs(s1, s2, i - 1, j)); } } // function to find minimum number // of deletions and insertions static void PrintMinDelAndInsert( string str1, string str2) { int m = str1.Length; int n = str2.Length; // Initializing dp array as -1 for ( int i = 0; i <= m; i++) { for ( int j = 0; j <= n; j++) { dp[i, j] = -1; } } int len = lcs(str1, str2, m, n); Console.WriteLine( "Minimum number of deletions = " + (m - len)); Console.WriteLine( "Minimum number of insertions = " + (n - len)); } static void Main( string [] args) { string str1 = "heap" ; string str2 = "pea" ; // Function Call PrintMinDelAndInsert(str1, str2); } } } // This code is contributed by divyansh2212 |
Javascript
// Dynamic Programming JavaScript implementation to find // minimum number of deletions and insertions // using memoization technique const dp = new Array(1001).fill(-1).map(() => new Array(1001).fill(-1)); // Returns length of longest common subsequence const lcs = (s1, s2, i, j) => { if (i === 0 || j === 0) { return 0; } if (dp[i][j] !== -1) { return dp[i][j]; } if (s1[i - 1] === s2[j - 1]) { dp[i][j] = 1 + lcs(s1, s2, i - 1, j - 1); return dp[i][j]; } else { dp[i][j] = Math.max(lcs(s1, s2, i, j - 1), lcs(s1, s2, i - 1, j)); return dp[i][j]; } }; // function to find minimum number // of deletions and insertions const printMinDelAndInsert = (str1, str2) => { let m = str1.length; let n = str2.length; // initialising dp array as -1 let len = lcs(str1, str2, m, n); console.log(`Minimum number of deletions = ${m - len}`); console.log(`Minimum number of insertions = ${n - len}`); } // driver code let str1 = "heap" ; let str2 = "pea" ; // Function Call printMinDelAndInsert(str1, str2); // This code is contributed by lokeshpotta20. |
Minimum number of deletions = 2 Minimum number of insertions = 1
Time Complexity: O(m * n)
Auxiliary Space: O(m * n)
Efficient approach: Space optimization
In previous approach the current value dp[i][j] is only depend upon the current and previous row values of DP. So to optimize the space complexity we use a single 1D array to store the computations.
Implementation steps:
- Create a 1D vector dp of size n+1.
- Set a base case by initializing the values of DP .
- Now iterate over subproblems by the help of nested loop and get the current value from previous computations.
- Now initialize a variable prev used to store the previous computations and a variable temp to store the current computation.
- After every iteration assign the value of prev to temp for further iteration.
- At last return and print the final answer stored in dp[0].
Implementation:
C++
#include <algorithm> #include <iostream> #include <vector> using namespace std; int lcs(string str1, string str2) { int m = str1.size(); int n = str2.size(); // Single vector to store the previous row vector< int > dp(n + 1, 0); for ( int i = 1; i <= m; i++) { // Store the value of dp[j-1] from the previous // iteration int prev = 0; for ( int j = 1; j <= n; j++) { // Store the current value of dp[j] before // modifying it int temp = dp[j]; if (str1[i - 1] == str2[j - 1]) dp[j] = prev + 1; else dp[j] = max(dp[j], dp[j - 1]); // Update prev for the next iteration prev = temp; } } return dp[n]; // Return the length of the LCS } void printMinDelAndInsert(string str1, string str2) { int len = lcs(str1, str2); int m = str1.size(); int n = str2.size(); cout << "Minimum number of deletions = " << (m - len) << endl; cout << "Minimum number of insertions = " << (n - len) << endl; } // Driver Code int main() { string str1 = "heap" ; string str2 = "pea" ; printMinDelAndInsert(str1, str2); return 0; } // -- by bhardwajji |
Python3
def lcs(str1, str2): m = len (str1) n = len (str2) # Create a matrix to store the LCS lengths dp = [[ 0 ] * (n + 1 ) for _ in range (m + 1 )] for i in range ( 1 , m + 1 ): for j in range ( 1 , n + 1 ): if str1[i - 1 ] = = str2[j - 1 ]: # If characters match, extend LCS by 1 dp[i][j] = dp[i - 1 ][j - 1 ] + 1 else : # Otherwise, take the maximum LCS length from the previous row or column dp[i][j] = max (dp[i - 1 ][j], dp[i][j - 1 ]) return dp[m][n] def print_min_del_and_insert(str1, str2): len_lcs = lcs(str1, str2) # Calculate the length of the Longest Common Subsequence m = len (str1) n = len (str2) # Calculate the minimum number of deletions and insertions min_deletions = m - len_lcs min_insertions = n - len_lcs print ( "Minimum number of deletions =" , min_deletions) print ( "Minimum number of insertions =" , min_insertions) # Driver Code if __name__ = = "__main__" : str1 = "heap" str2 = "pea" print_min_del_and_insert(str1, str2) |
Minimum number of deletions = 2 Minimum number of insertions = 1
Time Complexity: O(m * n)
Auxiliary Space: O(n)
This article is contributed by Ayush Jauhari. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!