Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum number of colors required to color a Circular Array

Minimum number of colors required to color a Circular Array

Given a circular array arr[] containing N integers, the task is to find the minimum number of colors required to color the array element such that two adjacent elements having different values must not be colored the same.
Examples: 
 

Input: arr[] = {1, 2, 1, 1, 2} 
Output:
Explanation: 
Minimum 2 type of colors are required. 
We can distribute color as {r, g, r, r, g} such that no adjacent element having different value are colored same.
 

Input: arr[] = {1, 2, 3, 4} 
Output:
Explanation: 
Minimum 2 type of colors are required. 
We can distribute color as {r, g, r, g}. 

 

Approach: This problem can be solved using Greedy Approach
 

  1. If all the values are same then only 1 color is required.
  2. If there are more than one distinct elements and the total number of elements are even then, 2 colors are required.
  3. If there are more than one distinct elements and the total number of elements are odd then, check: 
    • If there exist adjacent elements having the same value, then 2 colors are required.
    • Else 3 colors are required.

Below is the implementation of the above approach: 
 

C++




// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Driver Code
int main()
{
 
    // Given array
    vector<int> lst = { 1, 2, 3, 3, 4, 5, 5 };
 
    bool flag1 = true;
    bool flag_adj = false;
 
    int count = 0;
    int count_color = 0;
 
    for (int i = 0; i < lst.size() - 1; i++) {
        if (lst[i] != lst[i + 1])
            flag1 = false;
        else
            count += 1;
    }
 
    if (flag1 == true) {
        count_color = 1;
    }
    else {
        if ((lst.size() - count) % 2 != 0)
            count_color = 3;
        else
            count_color = 2;
    }
   
      // Printing the answer
    cout << count_color << "\n";
    return 0;
}
 
// This code is contributed by Taranpreet


Java




import java.util.List;
import java.util.ArrayList;
 
public class Main {
    public static void main(String[] args) {
        // Given array
        List<Integer> lst = new ArrayList<>();
        lst.add(1);
        lst.add(2);
        lst.add(3);
        lst.add(3);
        lst.add(4);
        lst.add(5);
        lst.add(5);
 
        boolean flag1 = true;
        int count = 0;
        int count_color = 0;
 
        for (int i = 0; i < lst.size() - 1; i++) {
            if (lst.get(i) != lst.get(i + 1))
                flag1 = false;
            else
                count += 1;
        }
 
        if (flag1) {
            count_color = 1;
        }
        else {
            if ((lst.size() - count) % 2 != 0)
                count_color = 3;
            else
                count_color = 2;
        }
 
        // Printing the answer
        System.out.println(count_color);
    }
}


Python3




# Python code for the above approach
 
lst = [1, 2, 3, 3, 4, 5, 5]
 
flag1 = True
flag_adj = False
 
count = 0
 
for i in range(len(lst)-1):
    if lst[i] != lst[i+1]:
        flag1 = False
    else:
        count += 1
if flag1 == True:
    count_color = 1
else:
    if (len(lst)-count) % 2:
        count_color = 3
    else:
        count_color = 2
         
print(count_color)


Javascript




<script>
 
let lst = [1,2,3,3,4,5,5]
let flag1 = true
let flag_adj = false
let count = 0
for(let i = 0; i < lst.length - 1; i++)
{
    if(lst[i] != lst[i + 1])
        flag1 = false
    else
        count += 1
}
if(flag1 == true)
    count_color = 1
else{
    if((lst.length-count)%2)
        count_color = 3
    else
        count_color = 2
}
document.write(count_color)
 
// This code is contributed by shinjanpatra
 
</script>


C#




// C# code for the above approach
using System;
using System.Collections.Generic;
 
public class Program
{
    public static void Main(string[] args)
    {
        // Given array
        List<int> lst = new List<int>() { 1, 2, 3, 3, 4, 5, 5 };
 
        bool flag1 = true;
        int count = 0;
        int count_color = 0;
 
        for (int i = 0; i < lst.Count - 1; i++)
        {
            if (lst[i] != lst[i + 1])
                flag1 = false;
            else
                count += 1;
        }
 
        if (flag1)
        {
            count_color = 1;
        }
        else
        {
            if ((lst.Count - count) % 2 != 0)
                count_color = 3;
            else
                count_color = 2;
        }
 
        // Printing the answer
        Console.WriteLine(count_color);
    }
}


Output

3

Time Complexity: O(N), where N is the number of elements.
Auxiliary Space: O(1), as constant space is used.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments